hadrakey commited on
Commit
17bd62d
·
verified ·
1 Parent(s): 33d5bbb

Training in progress, step 1000

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +171 -0
  2. .gitignore~ +170 -0
  3. README.md +7 -0
  4. adapter_config.json +35 -0
  5. adapter_model.safetensors +3 -0
  6. config.json +177 -0
  7. data.py +152 -0
  8. finetune_phi3_vision.py +232 -0
  9. finetuner_usloath.py +174 -0
  10. idefics2/adapter_config.json +26 -0
  11. idefics2/adapter_model.safetensors +3 -0
  12. idefics2/checkpoint-10000/adapter_config.json +26 -0
  13. idefics2/checkpoint-10000/adapter_model.safetensors +3 -0
  14. idefics2/checkpoint-10000/generation_config.json +7 -0
  15. idefics2/checkpoint-10000/optimizer.pt +3 -0
  16. idefics2/checkpoint-10000/rng_state.pth +3 -0
  17. idefics2/checkpoint-10000/scheduler.pt +3 -0
  18. idefics2/checkpoint-10000/trainer_state.json +0 -0
  19. idefics2/checkpoint-10000/training_args.bin +3 -0
  20. idefics2/checkpoint-8000/adapter_config.json +26 -0
  21. idefics2/checkpoint-8000/adapter_model.safetensors +3 -0
  22. idefics2/checkpoint-8000/generation_config.json +18 -0
  23. idefics2/checkpoint-8000/optimizer.pt +3 -0
  24. idefics2/checkpoint-8000/rng_state.pth +3 -0
  25. idefics2/checkpoint-8000/scheduler.pt +3 -0
  26. idefics2/checkpoint-8000/trainer_state.json +0 -0
  27. idefics2/checkpoint-8000/training_args.bin +3 -0
  28. idefics2/checkpoint-9000/adapter_config.json +26 -0
  29. idefics2/checkpoint-9000/adapter_model.safetensors +3 -0
  30. idefics2/checkpoint-9000/generation_config.json +18 -0
  31. idefics2/checkpoint-9000/optimizer.pt +3 -0
  32. idefics2/checkpoint-9000/rng_state.pth +3 -0
  33. idefics2/checkpoint-9000/scheduler.pt +3 -0
  34. idefics2/checkpoint-9000/trainer_state.json +0 -0
  35. idefics2/checkpoint-9000/training_args.bin +3 -0
  36. idefics2/training_args.bin +3 -0
  37. inference.py +38 -0
  38. inference_idefics2.py +97 -0
  39. model.py +204 -0
  40. model.safetensors +3 -0
  41. model_sft.py +217 -0
  42. phi3/checkpoint-25/adapter_config.json +26 -0
  43. phi3/checkpoint-25/adapter_model.safetensors +3 -0
  44. phi3/checkpoint-25/generation_config.json +18 -0
  45. phi3/checkpoint-25/optimizer.pt +3 -0
  46. phi3/checkpoint-25/rng_state.pth +3 -0
  47. phi3/checkpoint-25/scheduler.pt +3 -0
  48. phi3/checkpoint-25/trainer_state.json +84 -0
  49. phi3/checkpoint-25/training_args.bin +3 -0
  50. phi3_ocr.py +176 -0
.gitignore ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+ .git/
131
+
132
+ # Spyder project settings
133
+ .spyderproject
134
+ .spyproject
135
+
136
+ # Rope project settings
137
+ .ropeproject
138
+
139
+ # mkdocs documentation
140
+ /site
141
+
142
+ # mypy
143
+ .mypy_cache/
144
+ .dmypy.json
145
+ dmypy.json
146
+
147
+ # Pyre type checker
148
+ .pyre/
149
+
150
+ # pytype static type analyzer
151
+ .pytype/
152
+
153
+ # Cython debug symbols
154
+ cython_debug/
155
+
156
+ # PyCharm
157
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
158
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
159
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
160
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
161
+ #.idea/
162
+
163
+
164
+ # nohup output
165
+ nohup.out
166
+
167
+ # wandb and output
168
+ wandb/
169
+ output/
170
+ trl/
171
+
.gitignore~ ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+ .git/
131
+
132
+ # Spyder project settings
133
+ .spyderproject
134
+ .spyproject
135
+
136
+ # Rope project settings
137
+ .ropeproject
138
+
139
+ # mkdocs documentation
140
+ /site
141
+
142
+ # mypy
143
+ .mypy_cache/
144
+ .dmypy.json
145
+ dmypy.json
146
+
147
+ # Pyre type checker
148
+ .pyre/
149
+
150
+ # pytype static type analyzer
151
+ .pytype/
152
+
153
+ # Cython debug symbols
154
+ cython_debug/
155
+
156
+ # PyCharm
157
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
158
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
159
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
160
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
161
+ #.idea/
162
+
163
+
164
+ # nohup output
165
+ nohup.out
166
+
167
+ # wandb and output
168
+ wandb/
169
+ output/
170
+
README.md ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # Alphapen
2
+
3
+ This project aims to develop an OCR model for instantaneous text extraction from handwritten documents. The ultimate goal is to seamlessly integrate such a model into computers or mobile phones, allowing for the direct digitalization of handwritten documents using a proprietary pen manufactured by a startup company named [Alphapen](https://alphapen.fr/views/index.html).
4
+
5
+ # Fine-tuning the TrOCR model
6
+
7
+ python model.py --log_with wandb --push_to_hub True --hub_model_id hadrakey/alphapen_trocr
adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "VisionEncoderDecoderModel",
5
+ "parent_library": "transformers.models.vision_encoder_decoder.modeling_vision_encoder_decoder"
6
+ },
7
+ "base_model_name_or_path": "microsoft/trocr-base-handwritten",
8
+ "bias": "none",
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_dropout": 0.1,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "query",
27
+ "value",
28
+ "key",
29
+ "output.dense",
30
+ "intermediate.dense"
31
+ ],
32
+ "task_type": null,
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18e416e21002c2c154d18c28e4908b391ebc79c52e03c88c4b3eb93325c5b298
3
+ size 10637752
config.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/trocr-base-handwritten",
3
+ "architectures": [
4
+ "VisionEncoderDecoderModel"
5
+ ],
6
+ "decoder": {
7
+ "_name_or_path": "",
8
+ "activation_dropout": 0.0,
9
+ "activation_function": "gelu",
10
+ "add_cross_attention": true,
11
+ "architectures": null,
12
+ "attention_dropout": 0.0,
13
+ "bad_words_ids": null,
14
+ "begin_suppress_tokens": null,
15
+ "bos_token_id": 0,
16
+ "chunk_size_feed_forward": 0,
17
+ "classifier_dropout": 0.0,
18
+ "cross_attention_hidden_size": 768,
19
+ "d_model": 1024,
20
+ "decoder_attention_heads": 16,
21
+ "decoder_ffn_dim": 4096,
22
+ "decoder_layerdrop": 0.0,
23
+ "decoder_layers": 12,
24
+ "decoder_start_token_id": 2,
25
+ "diversity_penalty": 0.0,
26
+ "do_sample": false,
27
+ "dropout": 0.1,
28
+ "early_stopping": false,
29
+ "encoder_no_repeat_ngram_size": 0,
30
+ "eos_token_id": 2,
31
+ "exponential_decay_length_penalty": null,
32
+ "finetuning_task": null,
33
+ "forced_bos_token_id": null,
34
+ "forced_eos_token_id": null,
35
+ "id2label": {
36
+ "0": "LABEL_0",
37
+ "1": "LABEL_1"
38
+ },
39
+ "init_std": 0.02,
40
+ "is_decoder": true,
41
+ "is_encoder_decoder": false,
42
+ "label2id": {
43
+ "LABEL_0": 0,
44
+ "LABEL_1": 1
45
+ },
46
+ "layernorm_embedding": true,
47
+ "length_penalty": 1.0,
48
+ "max_length": 20,
49
+ "max_position_embeddings": 512,
50
+ "min_length": 0,
51
+ "model_type": "trocr",
52
+ "no_repeat_ngram_size": 0,
53
+ "num_beam_groups": 1,
54
+ "num_beams": 1,
55
+ "num_return_sequences": 1,
56
+ "output_attentions": false,
57
+ "output_hidden_states": false,
58
+ "output_scores": false,
59
+ "pad_token_id": 1,
60
+ "prefix": null,
61
+ "problem_type": null,
62
+ "pruned_heads": {},
63
+ "remove_invalid_values": false,
64
+ "repetition_penalty": 1.0,
65
+ "return_dict": true,
66
+ "return_dict_in_generate": false,
67
+ "scale_embedding": false,
68
+ "sep_token_id": null,
69
+ "suppress_tokens": null,
70
+ "task_specific_params": null,
71
+ "temperature": 1.0,
72
+ "tf_legacy_loss": false,
73
+ "tie_encoder_decoder": false,
74
+ "tie_word_embeddings": true,
75
+ "tokenizer_class": null,
76
+ "top_k": 50,
77
+ "top_p": 1.0,
78
+ "torch_dtype": null,
79
+ "torchscript": false,
80
+ "typical_p": 1.0,
81
+ "use_bfloat16": false,
82
+ "use_cache": false,
83
+ "use_learned_position_embeddings": true,
84
+ "vocab_size": 50265
85
+ },
86
+ "decoder_start_token_id": 0,
87
+ "early_stopping": true,
88
+ "encoder": {
89
+ "_name_or_path": "",
90
+ "add_cross_attention": false,
91
+ "architectures": null,
92
+ "attention_probs_dropout_prob": 0.0,
93
+ "bad_words_ids": null,
94
+ "begin_suppress_tokens": null,
95
+ "bos_token_id": null,
96
+ "chunk_size_feed_forward": 0,
97
+ "cross_attention_hidden_size": null,
98
+ "decoder_start_token_id": null,
99
+ "diversity_penalty": 0.0,
100
+ "do_sample": false,
101
+ "early_stopping": false,
102
+ "encoder_no_repeat_ngram_size": 0,
103
+ "encoder_stride": 16,
104
+ "eos_token_id": null,
105
+ "exponential_decay_length_penalty": null,
106
+ "finetuning_task": null,
107
+ "forced_bos_token_id": null,
108
+ "forced_eos_token_id": null,
109
+ "hidden_act": "gelu",
110
+ "hidden_dropout_prob": 0.0,
111
+ "hidden_size": 768,
112
+ "id2label": {
113
+ "0": "LABEL_0",
114
+ "1": "LABEL_1"
115
+ },
116
+ "image_size": 384,
117
+ "initializer_range": 0.02,
118
+ "intermediate_size": 3072,
119
+ "is_decoder": false,
120
+ "is_encoder_decoder": false,
121
+ "label2id": {
122
+ "LABEL_0": 0,
123
+ "LABEL_1": 1
124
+ },
125
+ "layer_norm_eps": 1e-12,
126
+ "length_penalty": 1.0,
127
+ "max_length": 20,
128
+ "min_length": 0,
129
+ "model_type": "vit",
130
+ "no_repeat_ngram_size": 0,
131
+ "num_attention_heads": 12,
132
+ "num_beam_groups": 1,
133
+ "num_beams": 1,
134
+ "num_channels": 3,
135
+ "num_hidden_layers": 12,
136
+ "num_return_sequences": 1,
137
+ "output_attentions": false,
138
+ "output_hidden_states": false,
139
+ "output_scores": false,
140
+ "pad_token_id": null,
141
+ "patch_size": 16,
142
+ "prefix": null,
143
+ "problem_type": null,
144
+ "pruned_heads": {},
145
+ "qkv_bias": false,
146
+ "remove_invalid_values": false,
147
+ "repetition_penalty": 1.0,
148
+ "return_dict": true,
149
+ "return_dict_in_generate": false,
150
+ "sep_token_id": null,
151
+ "suppress_tokens": null,
152
+ "task_specific_params": null,
153
+ "temperature": 1.0,
154
+ "tf_legacy_loss": false,
155
+ "tie_encoder_decoder": false,
156
+ "tie_word_embeddings": true,
157
+ "tokenizer_class": null,
158
+ "top_k": 50,
159
+ "top_p": 1.0,
160
+ "torch_dtype": null,
161
+ "torchscript": false,
162
+ "typical_p": 1.0,
163
+ "use_bfloat16": false
164
+ },
165
+ "eos_token_id": 2,
166
+ "is_encoder_decoder": true,
167
+ "length_penalty": 2.0,
168
+ "max_length": 64,
169
+ "model_type": "vision-encoder-decoder",
170
+ "no_repeat_ngram_size": 3,
171
+ "num_beams": 4,
172
+ "pad_token_id": 1,
173
+ "processor_class": "TrOCRProcessor",
174
+ "tie_word_embeddings": false,
175
+ "torch_dtype": "float32",
176
+ "transformers_version": "4.44.2"
177
+ }
data.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils.data import Dataset
3
+ from PIL import Image
4
+ import json
5
+ from transformers import TrOCRProcessor
6
+ import pandas as pd
7
+ from sklearn.model_selection import train_test_split
8
+ import glob
9
+ import torchvision.transforms as transforms
10
+ import numpy as np
11
+
12
+ def prepare_data_frame(root_dir):
13
+ with open(root_dir) as f:
14
+ d = json.load(f)
15
+ filename = [d[i]["word_id"]+ ".png" for i in range(len(d))]
16
+ text = [d[i]["text"] for i in range(len(d))]
17
+ data = {'filename': filename, 'text': text}
18
+ df = pd.DataFrame(data=data)
19
+ return df
20
+
21
+
22
+ class AphaPenDataset(Dataset):
23
+ def __init__(self, root_dir, df, processor, transform=None, max_target_length=128):
24
+ self.root_dir = root_dir
25
+ self.df= df
26
+ # self.filename, self.text = self.prepare_data()
27
+ self.processor = processor
28
+ self.max_target_length = max_target_length
29
+ self.transform = transform
30
+
31
+ def __len__(self):
32
+ return len(self.df)
33
+
34
+ def __getitem__(self, idx):
35
+ # get file name + text
36
+ file_name = self.df.filename[idx]
37
+ text = self.df.text[idx]
38
+ # prepare image (i.e. resize + normalize)
39
+ image = Image.open(self.root_dir + file_name).convert("RGB")
40
+ if self.transform is not None:
41
+ image = self.transform(image)
42
+ img=transforms.ToPILImage()(image)
43
+ img.save("/mnt/data1/Datasets/AlphaPen/transformed_images/" + file_name)
44
+ pixel_values = self.processor(image, return_tensors="pt").pixel_values
45
+ # add labels (input_ids) by encoding the text
46
+ labels = self.processor.tokenizer(text,
47
+ padding="max_length",
48
+ max_length=self.max_target_length).input_ids
49
+ # important: make sure that PAD tokens are ignored by the loss function
50
+ labels = [label if label != self.processor.tokenizer.pad_token_id else -100 for label in labels]
51
+
52
+ encoding = {"pixel_values": pixel_values.squeeze(), "labels": torch.tensor(labels)}
53
+ return encoding
54
+
55
+ def prepare_data(self):
56
+ with open(self.path_json) as f:
57
+ d = json.load(f)
58
+ filename = [d[i]["image_id"]+ ".png" for i in range(len(d))]
59
+ text = [d[i]["text"] for i in range(len(d))]
60
+ return filename, text
61
+
62
+
63
+ class AlphaPenPhi3Dataset(Dataset):
64
+ def __init__(self, root_dir, dataframe, tokenizer, max_length, image_size):
65
+ self.dataframe = dataframe
66
+ self.tokenizer = tokenizer
67
+ self.tokenizer.padding_side = 'left'
68
+ self.max_length = max_length
69
+ self.root_dir = root_dir
70
+ self.transform = transforms.Compose([
71
+ transforms.Resize((image_size, image_size)),
72
+ transforms.ToTensor()
73
+ ])
74
+
75
+ def __len__(self):
76
+ return len(self.dataframe)
77
+
78
+
79
+ def __getitem__(self, idx):
80
+ row = self.dataframe.iloc[idx]
81
+ text = f"<|user|>\n<|image_1|>What is shown in this image?<|end|><|assistant|>\n {row['text']} <|end|>"
82
+ image_path = self.root_dir + row['filename']
83
+
84
+ # Tokenize text
85
+ encodings = self.tokenizer(text, truncation=True, padding='max_length', max_length=self.max_length)
86
+
87
+ try:
88
+ # Load and transform image
89
+ image = Image.open(image_path).convert("RGB")
90
+ image = self.image_transform_function(image)
91
+ except (FileNotFoundError, IOError):
92
+ # Skip the sample if the image is not found
93
+ return None
94
+
95
+ labels = self.tokenizer(row['text'],
96
+ padding="max_length",
97
+ max_length=self.max_length).input_ids
98
+ # important: make sure that PAD tokens are ignored by the loss function
99
+ labels = [label if label != self.tokenizer.pad_token_id else -100 for label in labels]
100
+ encodings['pixel_values'] = image
101
+ encodings['labels'] = labels
102
+
103
+ return {key: torch.tensor(val) for key, val in encodings.items()}
104
+
105
+
106
+ def image_transform_function(self, image):
107
+ image = self.transform(image)
108
+ return image
109
+
110
+
111
+
112
+
113
+ if __name__ == "__main__":
114
+ json_path = "/mnt/data1/Datasets/OCR/Alphapen/label_check/"
115
+ json_path_b2 = "/mnt/data1/Datasets/OCR/Alphapen/DataBatch2/label_check/"
116
+ root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
117
+ root_dir_b2 = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
118
+ json_files = glob.glob(json_path + "*.json")
119
+ json_files_b2 = glob.glob(json_path_b2 + "*.json")
120
+ root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
121
+ df_list_b1 = [prepare_data_frame(file) for file in json_files]
122
+ df_list_b2 = [prepare_data_frame(file) for file in json_files_b2]
123
+ # df_list = df_list_b1 + df_list_b2
124
+ df_b1 = pd.concat(df_list_b1)
125
+ df_b2 = pd.concat(df_list_b2)
126
+
127
+ df_b1.to_csv("/mnt/data1/Datasets/AlphaPen/" + "testing_data_b1.csv")
128
+ df_b2.to_csv("/mnt/data1/Datasets/AlphaPen/" + "testing_data_b2.csv")
129
+ # train_df, test_df = train_test_split(df, test_size=0.15)
130
+ # # we reset the indices to start from zero
131
+ # train_df.reset_index(drop=True, inplace=True)
132
+ # test_df.reset_index(drop=True, inplace=True)
133
+ # processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
134
+ # train_dataset = AphaPenDataset(root_dir=root_dir, df=train_df, processor=processor)
135
+ # eval_dataset = AphaPenDataset(root_dir=root_dir, df=test_df, processor=processor)
136
+ # print("Number of training examples:", len(train_dataset))
137
+ # print("Number of validation examples:", len(eval_dataset))
138
+
139
+ # encoding = train_dataset[0]
140
+ # for k,v in encoding.items():
141
+ # print(k, v.shape)
142
+
143
+ # image = Image.open(train_dataset.root_dir + df.filename[0]).convert("RGB")
144
+ # print('Label: '+df.text[0])
145
+ # print(image)
146
+
147
+ # labels = encoding['labels']
148
+ # print(labels)
149
+
150
+ # labels[labels == -100] = processor.tokenizer.pad_token_id
151
+ # label_str = processor.decode(labels, skip_special_tokens=True)
152
+ # print('Decoded Label:', label_str)
finetune_phi3_vision.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import Dataset, DatasetDict, Image
2
+ import pandas as pd
3
+ import os
4
+
5
+ import torch
6
+ from peft import LoraConfig
7
+ from transformers import AutoProcessor, BitsAndBytesConfig
8
+ from transformers import AutoModelForCausalLM, AutoModelForVision2Seq
9
+ from datetime import datetime
10
+ import evaluate
11
+ # Define train and test size.
12
+ TRAIN_SAMPLES = 1000
13
+ TEST_SAMPLES = 200
14
+ TEST_SIZE = 0.166 #
15
+
16
+ # Define the directory containing the images.
17
+ df_path = "/mnt/data1/Datasets/AlphaPen/" + "training_data.csv"
18
+ df = pd.read_csv(df_path)
19
+ df.dropna(inplace=True)
20
+ df["id"] = range(df.shape[0])
21
+ df["query"] = "What is shown in this image?"
22
+
23
+ root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
24
+ image_paths = [root_dir + img for img in df.filename]
25
+
26
+ # New batch
27
+ df_path_2 = "/mnt/data1/Datasets/AlphaPen/" + "training_b2.csv"
28
+ df_2 = pd.read_csv(df_path_2)
29
+ df_2.dropna(inplace=True)
30
+ df_2["id"] = range(df_2.shape[0])
31
+ df_2["query"] = "What is shown in this image?"
32
+
33
+ root_dir_2 = "/mnt/data1/Datasets/OCR/Alphapen/DataBatch2/clean_data/cropped_data/cropped_"
34
+ image_paths_2 = [root_dir_2 + img for img in df_2.filename]
35
+ # Create a list of other columns such as id, query, and answer.
36
+ ids = range(df.shape[0] + df_2.shape[0])
37
+ queries = df['query'].tolist() + df_2['query'].tolist()
38
+ answers = df['text'].tolist() + df_2['text'].tolist()
39
+
40
+ # Create the dataset dictionary.
41
+ dataset_dict = {
42
+ 'id': ids,
43
+ 'image': image_paths + image_paths_2,
44
+ 'query': queries,
45
+ 'answers': answers
46
+ }
47
+
48
+ # Create the dataset.
49
+ dataset = Dataset.from_dict(dataset_dict)
50
+
51
+ # Cast the 'image' column to Image type.
52
+ dataset = dataset.cast_column("image", Image())
53
+
54
+ # Split the dataset into train and test.
55
+ split_dataset = dataset.train_test_split(test_size=TEST_SIZE, shuffle=False)
56
+
57
+ train_dataset = split_dataset["train"]
58
+ eval_dataset = split_dataset["test"]
59
+ print(len(train_dataset))
60
+ # Push the dataset on Hugging Face Hub.
61
+ # split_dataset.push_to_hub("NSTiwari/DocumentIDEFICS_QA")
62
+
63
+ os.environ["WANDB_PROJECT"]="Alphapen"
64
+
65
+ # Define model ID
66
+ # model_id = "microsoft/Phi-3-vision-128k-instruct"
67
+ model_id = "HuggingFaceM4/idefics2-8b"
68
+
69
+ DEVICE = "cuda:0"
70
+ USE_LORA = False
71
+ USE_QLORA = True
72
+
73
+ processor = AutoProcessor.from_pretrained(
74
+ model_id,
75
+ do_image_splitting=False
76
+ )
77
+
78
+ # print(processor.tokenizer.additional_special_tokens.index("<image>"))
79
+ if USE_QLORA or USE_LORA:
80
+ lora_config = LoraConfig(
81
+ r=64,
82
+ lora_alpha=16,
83
+ lora_dropout=0.1,
84
+ # target_modules= [
85
+ # "q_proj",
86
+ # "k_proj",
87
+ # "v_proj",
88
+ # "o_proj",
89
+ # "gate_proj",
90
+ # "up_proj",
91
+ # # "down_proj",
92
+ # ],
93
+ target_modules = '.*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$',
94
+ use_dora=False if USE_QLORA else True,
95
+ init_lora_weights="gaussian"
96
+ )
97
+ if USE_QLORA:
98
+ bnb_config = BitsAndBytesConfig(
99
+ load_in_4bit=True,
100
+ bnb_4bit_quant_type="nf4",
101
+ bnb_4bit_compute_dtype=torch.float16
102
+ )
103
+ model = AutoModelForVision2Seq.from_pretrained(
104
+ model_id,
105
+ torch_dtype=torch.float16,
106
+ quantization_config=bnb_config if USE_QLORA else None,
107
+ trust_remote_code=True
108
+ )
109
+ model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
110
+ model.config.pad_token_id = processor.tokenizer.pad_token_id
111
+ model.config.max_length= 128
112
+ model.add_adapter(lora_config)
113
+ model.enable_adapters()
114
+ else:
115
+ model = AutoModelForVision2Seq.from_pretrained(
116
+ model_id,
117
+ torch_dtype=torch.float16,
118
+ _attn_implementation="flash_attention_2", # Need GPUs like A100 or H100.
119
+ trust_remote_code=True
120
+ ).to(DEVICE)
121
+
122
+
123
+
124
+ import random
125
+
126
+ class MyDataCollator:
127
+ def __init__(self, processor):
128
+ self.processor = processor
129
+ self.image_token_id = processor.tokenizer.additional_special_tokens_ids[
130
+ processor.tokenizer.additional_special_tokens.index("<image>")
131
+ ]
132
+
133
+ def __call__(self, examples):
134
+ texts = []
135
+ images = []
136
+ for example in examples:
137
+ image = example["image"]
138
+ # print(example["query"])
139
+ question = example["query"]
140
+ answer = example["answers"]
141
+ messages = [
142
+ {
143
+ "role": "user",
144
+ "content": [
145
+ {"type": "text", "text": "OCR the text in the image."},
146
+ {"type": "image"},
147
+ {"type": "text", "text": question}
148
+ ]
149
+ },
150
+ {
151
+ "role": "assistant",
152
+ "content": [
153
+ {"type": "text", "text": answer}
154
+ ]
155
+ }
156
+ ]
157
+ text = processor.apply_chat_template(messages, add_generation_prompt=False)
158
+ texts.append(text.strip())
159
+ images.append([image])
160
+
161
+ batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
162
+
163
+ labels = batch["input_ids"].clone()
164
+ # labels[labels == processor.tokenizer.pad_token_id] = self.image_token_id
165
+ batch["labels"] = labels
166
+
167
+ return batch
168
+
169
+ data_collator = MyDataCollator(processor)
170
+
171
+ from transformers import TrainingArguments, Trainer, Seq2SeqTrainer, Seq2SeqTrainingArguments
172
+
173
+ training_args = Seq2SeqTrainingArguments(
174
+ predict_with_generate=True,
175
+ output_dir = "idefics2",
176
+ learning_rate = 2e-4,
177
+ fp16 = True,
178
+ per_device_train_batch_size = 8,
179
+ per_device_eval_batch_size = 8,
180
+ gradient_accumulation_steps = 2,
181
+ dataloader_pin_memory = False,
182
+ save_total_limit = 3,
183
+ eval_strategy ="steps",
184
+ save_strategy = "steps",
185
+ eval_steps = 200,
186
+ save_steps = 10000,
187
+ max_steps = 50000,
188
+ logging_steps = 10,
189
+ remove_unused_columns = False,
190
+ push_to_hub=True,
191
+ label_names = ["labels"],
192
+ load_best_model_at_end = False,
193
+ report_to = "wandb",
194
+ optim = "paged_adamw_8bit",
195
+ run_name=f"idefics2-vision-LoRA-{datetime.now().strftime('%Y-%m-%d-%H-%M-%s')}",
196
+ hub_model_id="hadrakey/alphapen_idefics2_finetune_v1",
197
+ )
198
+
199
+ def compute_metrics(pred):
200
+ # accuracy_metric = evaluate.load("precision")
201
+ cer_metric = evaluate.load("cer")
202
+
203
+ labels_ids = pred.label_ids
204
+ pred_ids = pred.predictions
205
+ # print(pred_ids)
206
+ # print(labels_ids)
207
+ # max_length = max(pred_ids.shape[1], labels_ids.shape[1])
208
+ # generated_texts = processor.batch_decode(generated_ids[:, inputs["input_ids"].size(1):], skip_special_tokens=True)
209
+ pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
210
+ pred_str = [word.lower() for word in pred_str]
211
+ # print(pred_str)
212
+ # pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
213
+ labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
214
+ label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
215
+ label_str = [word.lower() for word in label_str]
216
+ # print(label_str)
217
+ cer = cer_metric.compute(predictions=pred_str, references=label_str)
218
+ # accuracy = accuracy_metric.compute(predictions=pred_ids.tolist(), references=labels_ids.tolist())
219
+
220
+ return {"cer": cer}
221
+
222
+
223
+ trainer = Seq2SeqTrainer(
224
+ model = model,
225
+ args = training_args,
226
+ data_collator = data_collator,
227
+ train_dataset = train_dataset,
228
+ eval_dataset = eval_dataset,
229
+ compute_metrics=compute_metrics,
230
+ )
231
+
232
+ trainer.train()
finetuner_usloath.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Example inspired from https://huggingface.co/microsoft/Phi-3-vision-128k-instruct
2
+
3
+ # Import necessary libraries
4
+ from PIL import Image
5
+ import requests
6
+ from transformers import AutoModelForCausalLM
7
+ from transformers import AutoProcessor
8
+ from transformers import BitsAndBytesConfig
9
+ from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator
10
+ import torch
11
+ import pandas as pd
12
+ from torchmetrics.text import CharErrorRate
13
+ from peft import LoraConfig, get_peft_model
14
+ from data import AlphaPenPhi3Dataset
15
+ from sklearn.model_selection import train_test_split
16
+ from datetime import datetime
17
+ import os
18
+ import evaluate
19
+ # tqdm.pandas()
20
+ os.environ["WANDB_PROJECT"]="Alphapen"
21
+
22
+ # Define model ID
23
+ model_id = "microsoft/Phi-3-vision-128k-instruct"
24
+ # Load data
25
+
26
+ df_path = "/mnt/data1/Datasets/AlphaPen/" + "training_data.csv"
27
+ df = pd.read_csv(df_path)
28
+ df.dropna(inplace=True)
29
+ train_df, test_df = train_test_split(df, test_size=0.15, random_state=0)
30
+ # we reset the indices to start from zero
31
+ train_df.reset_index(drop=True, inplace=True)
32
+ test_df.reset_index(drop=True, inplace=True)
33
+ root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
34
+
35
+ processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
36
+ tokenizer = processor.tokenizer
37
+
38
+ train_dataset = AlphaPenPhi3Dataset(root_dir=root_dir, dataframe=train_df, tokenizer=tokenizer, max_length=128, image_size=128)
39
+ eval_dataset = AlphaPenPhi3Dataset(root_dir=root_dir, dataframe=test_df.iloc[:10,], tokenizer=tokenizer, max_length=128, image_size=128)
40
+
41
+ print(train_dataset[0])
42
+ nf4_config = BitsAndBytesConfig(
43
+ load_in_4bit=True,
44
+ bnb_4bit_quant_type="nf4",
45
+ bnb_4bit_use_double_quant=True,
46
+ bnb_4bit_compute_dtype=torch.bfloat16,
47
+ )
48
+
49
+ # Load model with 4-bit quantization and map to CUDA
50
+ model = AutoModelForCausalLM.from_pretrained(
51
+ model_id,
52
+ device_map="auto",
53
+ trust_remote_code=True,
54
+ torch_dtype="auto",
55
+ quantization_config=nf4_config,
56
+ )
57
+
58
+ # set special tokens used for creating the decoder_input_ids from the labels
59
+ model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
60
+ model.config.pad_token_id = processor.tokenizer.pad_token_id
61
+ # make sure vocab size is set correctly
62
+ # model.config.vocab_size = model.config.decoder.vocab_size
63
+ # for peft
64
+ # model.vocab_size = model.config.decoder.vocab_size
65
+
66
+ # set beam search parameters
67
+ model.config.eos_token_id = processor.tokenizer.sep_token_id
68
+ model.config.max_new_tokens= 128
69
+ model.config.early_stopping = True
70
+ model.config.no_repeat_ngram_size = 3
71
+ model.config.length_penalty = 2.0
72
+ model.config.num_beams = 4
73
+
74
+
75
+ # LoRa
76
+ lora_config = LoraConfig(
77
+ r=64,
78
+ lora_alpha=16,
79
+ lora_dropout=0.1,
80
+ # target_modules = 'all-linear'
81
+ target_modules=[
82
+ "q_proj",
83
+ "k_proj",
84
+ "v_proj",
85
+ "o_proj",
86
+ # "gate_proj",
87
+ # "up_proj",
88
+ # "down_proj",
89
+ ],
90
+ )
91
+ # print(model)
92
+ # import torch
93
+ # from transformers import Conv1D
94
+
95
+ # def get_specific_layer_names(model):
96
+ # # Create a list to store the layer names
97
+ # layer_names = []
98
+
99
+ # # Recursively visit all modules and submodules
100
+ # for name, module in model.named_modules():
101
+ # # Check if the module is an instance of the specified layers
102
+ # if isinstance(module, (torch.nn.Linear, torch.nn.Embedding, torch.nn.Conv2d, Conv1D)):
103
+ # # model name parsing
104
+
105
+ # layer_names.append('.'.join(name.split('.')[4:]).split('.')[0])
106
+
107
+ # return layer_names
108
+
109
+ # print(list(set(get_specific_layer_names(model))))
110
+ # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
111
+ # model.to(device)
112
+
113
+ model = get_peft_model(model, lora_config)
114
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
115
+ model = model.to(device)
116
+ # print(model.vocab_size)
117
+ # run_name=f"Mistral-7B-SQL-QLoRA-{datetime.now().strftime('%Y-%m-%d-%H-%M-%s')}"
118
+
119
+ # # Step 3: Define the training arguments
120
+ training_args = Seq2SeqTrainingArguments(
121
+ predict_with_generate=True,
122
+ evaluation_strategy="steps",
123
+ per_device_train_batch_size=8,
124
+ per_device_eval_batch_size=8,
125
+ bf16=True,
126
+ bf16_full_eval=True,
127
+ output_dir="./",
128
+ logging_steps=100,
129
+ save_steps=1000,
130
+ eval_steps=100,
131
+ report_to="wandb",
132
+ run_name=f"phi3-vision-LoRA-{datetime.now().strftime('%Y-%m-%d-%H-%M-%s')}",
133
+ optim="adamw_torch_fused",
134
+ lr_scheduler_type="cosine",
135
+ gradient_accumulation_steps=2,
136
+ learning_rate=1.0e-4,
137
+ max_steps=10000,
138
+ push_to_hub=True,
139
+ hub_model_id="hadrakey/alphapen_phi3",
140
+ )
141
+
142
+ def compute_metrics(pred):
143
+ # accuracy_metric = evaluate.load("precision")
144
+ cer_metric = evaluate.load("cer")
145
+
146
+ labels_ids = pred.label_ids
147
+ pred_ids = pred.predictions
148
+ print(labels_ids.shape, pred_ids.shape)
149
+ max_length = max(pred_ids.shape[1], labels_ids.shape[1])
150
+
151
+ pred_str = processor.batch_decode(pred_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)
152
+ print(pred_str)
153
+ # pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
154
+ labels_ids[labels_ids == -100] = tokenizer.pad_token_id
155
+ label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
156
+ print(label_str)
157
+ cer = cer_metric.compute(predictions=pred_str, references=label_str)
158
+ # accuracy = accuracy_metric.compute(predictions=pred_ids.tolist(), references=labels_ids.tolist())
159
+
160
+ return {"cer": cer}
161
+
162
+
163
+ # # Step 5: Define the Trainer
164
+ trainer = Seq2SeqTrainer(
165
+ model=model,
166
+ tokenizer=tokenizer,
167
+ args=training_args,
168
+ compute_metrics=compute_metrics,
169
+ train_dataset=train_dataset,
170
+ eval_dataset=eval_dataset,
171
+ data_collator=default_data_collator
172
+ )
173
+
174
+ trainer.train()
idefics2/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "HuggingFaceM4/idefics2-8b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": false,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": ".*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$",
23
+ "task_type": null,
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
idefics2/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a529961f33fd865061f2d504f10e9dbda5d36ac583ca54c807b178a3eef0a02
3
+ size 746528304
idefics2/checkpoint-10000/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "HuggingFaceM4/idefics2-8b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": false,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": ".*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$",
23
+ "task_type": null,
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
idefics2/checkpoint-10000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a529961f33fd865061f2d504f10e9dbda5d36ac583ca54c807b178a3eef0a02
3
+ size 746528304
idefics2/checkpoint-10000/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": 2,
4
+ "max_length": 128,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.42.3"
7
+ }
idefics2/checkpoint-10000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f18fec102e19e47ad7a4dc5a698a67204bd5a3f9a5e592c8b3c510be2357ad
3
+ size 374548180
idefics2/checkpoint-10000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4cb5638cdcc03d44751491c48ef9325c702b5d355c5ef610bd485b897821f63
3
+ size 14244
idefics2/checkpoint-10000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5351a4d2054ce412bb25cc143ed6232593a8af839dadb43b7080a505b08f3f6
3
+ size 1064
idefics2/checkpoint-10000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
idefics2/checkpoint-10000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42f9baac86ca26a549fd61c40400a3efd2e95f6a3486ca7a7482e10ccfbb4ac6
3
+ size 5368
idefics2/checkpoint-8000/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "HuggingFaceM4/idefics2-8b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": false,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": ".*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$",
23
+ "task_type": null,
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
idefics2/checkpoint-8000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9beb18aad93c70c527415b17f7e7cfc2d3142ad6521c26cf5b27642f6cfd1d68
3
+ size 746528304
idefics2/checkpoint-8000/generation_config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bad_words_ids": [
4
+ [
5
+ 32000
6
+ ],
7
+ [
8
+ 32001
9
+ ]
10
+ ],
11
+ "bos_token_id": 1,
12
+ "eos_token_id": [
13
+ 2,
14
+ 32002
15
+ ],
16
+ "pad_token_id": 0,
17
+ "transformers_version": "4.42.3"
18
+ }
idefics2/checkpoint-8000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b52cc7ac0241e0f119dba0c6b72dc5f4d5a429b38bd94eb75edb5a358b4b644
3
+ size 374548180
idefics2/checkpoint-8000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca311e524f1174ed34780c49c50e3110c40901c89b57036e41617328bbe51608
3
+ size 14244
idefics2/checkpoint-8000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0b4f2b37c59e9aaf35b1999b2d2c84957e88f5548679884092460d7d6d53d20
3
+ size 1064
idefics2/checkpoint-8000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
idefics2/checkpoint-8000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81357016d48c35c8aa3b0681c2713c513fb1ee31efc707674d85a48ef9eee341
3
+ size 5368
idefics2/checkpoint-9000/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "HuggingFaceM4/idefics2-8b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": false,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": ".*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$",
23
+ "task_type": null,
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
idefics2/checkpoint-9000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:073760f03d80782f132b9c3b74c826df46d8654df042a472117a01290cb7e44f
3
+ size 746528304
idefics2/checkpoint-9000/generation_config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bad_words_ids": [
4
+ [
5
+ 32000
6
+ ],
7
+ [
8
+ 32001
9
+ ]
10
+ ],
11
+ "bos_token_id": 1,
12
+ "eos_token_id": [
13
+ 2,
14
+ 32002
15
+ ],
16
+ "pad_token_id": 0,
17
+ "transformers_version": "4.42.3"
18
+ }
idefics2/checkpoint-9000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdd19fe724219197bfb17e4e705cf8801986dcb1e617f05fabedaf8ec38279ee
3
+ size 374548180
idefics2/checkpoint-9000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a6e481b24fb2e50ba449b0f66b256e83542f9ceba4a6efa543ab9acb0848a1b
3
+ size 14244
idefics2/checkpoint-9000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23554f3e4062472629006034b4ce40b01e49bd325d1fb48661fcf4c6868ee807
3
+ size 1064
idefics2/checkpoint-9000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
idefics2/checkpoint-9000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81357016d48c35c8aa3b0681c2713c513fb1ee31efc707674d85a48ef9eee341
3
+ size 5368
idefics2/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42f9baac86ca26a549fd61c40400a3efd2e95f6a3486ca7a7482e10ccfbb4ac6
3
+ size 5368
inference.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import TrOCRProcessor, VisionEncoderDecoderModel
2
+ import pandas as pd
3
+ from PIL import Image
4
+
5
+ # Finetuned model
6
+ model_finetune = VisionEncoderDecoderModel.from_pretrained("hadrakey/alphapen_trocr")
7
+
8
+ #Baseline
9
+ model_base = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
10
+
11
+ processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
12
+
13
+ # Checked label
14
+ df_path = "/mnt/data1/Datasets/AlphaPen/" + "testing_data.csv"
15
+ data = pd.read_csv(df_path)
16
+ data.dropna(inplace=True)
17
+ data.reset_index(inplace=True)
18
+
19
+ root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/"
20
+
21
+ inf_baseline = []
22
+ inf_finetune = []
23
+ for idx in range(len(data)):
24
+ image = Image.open(root_dir + "final_cropped_rotated_" + data.filename[idx]).convert("RGB")
25
+
26
+ pixel_values = processor(image, return_tensors="pt").pixel_values
27
+ generated_ids_base = model_base.generate(pixel_values)
28
+ generated_ids_fine = model_finetune.generate(pixel_values)
29
+ generated_text_base = processor.batch_decode(generated_ids_base, skip_special_tokens=True)[0]
30
+ generated_text_fine= processor.batch_decode(generated_ids_fine, skip_special_tokens=True)[0]
31
+
32
+ inf_baseline.append(generated_text_base)
33
+ inf_finetune.append(generated_text_fine)
34
+
35
+ data["Baseline"]=inf_baseline
36
+ data["Finetune"]=inf_finetune
37
+
38
+ data.to_csv("/mnt/data1/Datasets/AlphaPen/" + "inference_data.csv")
inference_idefics2.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import requests
3
+ from transformers import AutoModelForCausalLM
4
+ from transformers import AutoProcessor
5
+ from transformers import BitsAndBytesConfig
6
+ from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoModelForVision2Seq
7
+ import torch
8
+ import pandas as pd
9
+ from torchmetrics.text import CharErrorRate
10
+ from peft import PeftModel, PeftConfig
11
+ from torchmetrics.text import CharErrorRate
12
+ from datasets import Dataset, DatasetDict, Image
13
+ # Define train and test size.
14
+ TRAIN_SAMPLES = 1000
15
+ TEST_SAMPLES = 200
16
+ TEST_SIZE = 0.166 #
17
+ DEVICE = "cuda:0"
18
+ peft_model_id = "hadrakey/alphapen_idefics2_finetune_v1"
19
+
20
+ config = PeftConfig.from_pretrained(peft_model_id)
21
+ processor = AutoProcessor.from_pretrained(config.base_model_name_or_path, trust_remote_code=True)
22
+ base_model = AutoModelForVision2Seq.from_pretrained(config.base_model_name_or_path, device_map="auto", trust_remote_code=True, torch_dtype="auto")
23
+ model = PeftModel.from_pretrained(base_model, peft_model_id)
24
+ model = model.to(DEVICE)
25
+
26
+ # Define the directory containing the images.
27
+ df_path = "/mnt/data1/Datasets/AlphaPen/" + "testing_data.csv"
28
+ df = pd.read_csv(df_path)
29
+ df.dropna(inplace=True)
30
+ sample = df.iloc[:5000,:]
31
+ sample.reset_index(inplace=True)
32
+ sample["id"] = range(sample.shape[0])
33
+ sample["query"] = "What is shown in this image?"
34
+
35
+ root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
36
+ image_paths = [root_dir + img for img in sample.filename]
37
+ # Create a list of other columns such as id, query, and answer.
38
+ ids = sample['id'].tolist()
39
+ queries = sample['query'].tolist()
40
+ answers = sample['text'].tolist()
41
+
42
+ # Create the dataset dictionary.
43
+ dataset_dict = {
44
+ 'id': ids,
45
+ 'image': image_paths,
46
+ 'query': queries,
47
+ 'answers': answers
48
+ }
49
+
50
+ # Create the dataset.
51
+ dataset = Dataset.from_dict(dataset_dict)
52
+
53
+ # Cast the 'image' column to Image type.
54
+ dataset = dataset.cast_column("image", Image())
55
+
56
+ # Split the dataset into train and test.
57
+ # split_dataset = dataset.train_test_split(test_size=TEST_SIZE, shuffle=False)
58
+
59
+ # train_dataset = split_dataset["train"]
60
+ # eval_dataset = split_dataset["test"]
61
+
62
+ cer_metric = CharErrorRate()
63
+ cer_idefics = []
64
+ idefics_output = []
65
+
66
+ for idx in range(len(dataset)):
67
+
68
+ test_example = dataset[idx]
69
+
70
+ image = test_example["image"]
71
+ query = test_example["query"]
72
+
73
+
74
+ messages = [
75
+ {
76
+ "role": "user",
77
+ "content": [
78
+ {"type": "text", "text": "Answer briefly."},
79
+ {"type": "image"},
80
+ {"type": "text", "text": query}
81
+ ]
82
+ }
83
+ ]
84
+
85
+
86
+ text = processor.apply_chat_template(messages, add_generation_prompt=True)
87
+ inputs = processor(text=[text.strip()], images=[image], return_tensors="pt", padding=True)
88
+ inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
89
+ generated_ids = model.generate(**inputs, max_new_tokens=64)
90
+ generated_texts = processor.batch_decode(generated_ids[:, inputs["input_ids"].size(1):], skip_special_tokens=True)
91
+ idefics_output.append(generated_texts[0])
92
+ cer_idefics.append(cer_metric(generated_texts[0].lower(), test_example["answers"].lower()).detach().numpy())
93
+ # print(generated_texts, test_example["answers"], cer_idefics)
94
+
95
+ sample["idefics"] = idefics_output
96
+ sample["cer"] = cer_idefics
97
+ sample.to_csv("/mnt/data1/Datasets/AlphaPen/" + "sample_idefics_v1.csv")
model.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from dataclasses import dataclass, field
3
+ from typing import Optional
4
+ import pandas as pd
5
+
6
+ import torch
7
+ from accelerate import Accelerator
8
+ from datasets import load_dataset, Dataset, load_metric
9
+ from peft import LoraConfig
10
+ from tqdm import tqdm
11
+ from transformers import AutoModelForCausalLM, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, VisionEncoderDecoderModel, TrOCRProcessor, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator, EarlyStoppingCallback
12
+
13
+
14
+ from trl import SFTTrainer, is_xpu_available
15
+ from data import AphaPenDataset
16
+ import evaluate
17
+ from sklearn.model_selection import train_test_split
18
+
19
+ import torchvision.transforms as transforms
20
+ # from utils import compute_metrics
21
+ from src.calibrator import EncoderDecoderCalibrator
22
+ from src.loss import MarginLoss, KLRegularization
23
+ from src.similarity import CERSimilarity
24
+ import os
25
+ tqdm.pandas()
26
+
27
+ os.environ["WANDB_PROJECT"]="Alphapen"
28
+ # Define and parse arguments.
29
+ @dataclass
30
+ class ScriptArguments:
31
+ """
32
+ The name of the OCR model we wish to fine with Seq2SeqTrainer
33
+ """
34
+
35
+ model_name: Optional[str] = field(default="microsoft/trocr-base-handwritten", metadata={"help": "the model name"})
36
+ dataset_name: Optional[str] = field(
37
+ default="Anthropic/hh-rlhf", metadata={"help": "the dataset name"}
38
+ )
39
+ log_with: Optional[str] = field(default="none", metadata={"help": "use 'wandb' to log with wandb"})
40
+ learning_rate: Optional[float] = field(default=1.41e-5, metadata={"help": "the learning rate"})
41
+ batch_size: Optional[int] = field(default=8, metadata={"help": "the batch size"})
42
+ seq_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})
43
+ gradient_accumulation_steps: Optional[int] = field(
44
+ default=16, metadata={"help": "the number of gradient accumulation steps"}
45
+ )
46
+ load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
47
+ load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
48
+ use_peft: Optional[bool] = field(default=False, metadata={"help": "Wether to use PEFT or not to train adapters"})
49
+ trust_remote_code: Optional[bool] = field(default=False, metadata={"help": "Enable `trust_remote_code`"})
50
+ output_dir: Optional[str] = field(default="output", metadata={"help": "the output directory"})
51
+ peft_lora_r: Optional[int] = field(default=64, metadata={"help": "the r parameter of the LoRA adapters"})
52
+ peft_lora_alpha: Optional[int] = field(default=16, metadata={"help": "the alpha parameter of the LoRA adapters"})
53
+ logging_steps: Optional[int] = field(default=1, metadata={"help": "the number of logging steps"})
54
+ use_auth_token: Optional[bool] = field(default=True, metadata={"help": "Use HF auth token to access the model"})
55
+ num_train_epochs: Optional[int] = field(default=3, metadata={"help": "the number of training epochs"})
56
+ max_steps: Optional[int] = field(default=-1, metadata={"help": "the number of training steps"})
57
+ max_length: Optional[int] = field(default=10, metadata={"help": "the maximum length"})
58
+ no_repeat_ngram_size: Optional[int] = field(default=3, metadata={"help": "the number of repeat"})
59
+ length_penalty: Optional[float] = field(default=2.0, metadata={"help": "the length of penalty"})
60
+ num_beams: Optional[int] = field(default=3, metadata={"help": "the number of beam search"})
61
+ early_stopping: Optional[bool] = field(default=True, metadata={"help": "Early stopping"})
62
+ save_steps: Optional[int] = field(
63
+ default=1000, metadata={"help": "Number of updates steps before two checkpoint saves"}
64
+ )
65
+ save_total_limit: Optional[int] = field(default=10, metadata={"help": "Limits total number of checkpoints."})
66
+ push_to_hub: Optional[bool] = field(default=False, metadata={"help": "Push the model to HF Hub"})
67
+ gradient_checkpointing: Optional[bool] = field(
68
+ default=False, metadata={"help": "Whether to use gradient checkpointing or no"}
69
+ )
70
+ gradient_checkpointing_kwargs: Optional[dict] = field(
71
+ default=None,
72
+ metadata={
73
+ "help": "key word arguments to be passed along `torch.utils.checkpoint.checkpoint` method - e.g. `use_reentrant=False`"
74
+ },
75
+ )
76
+ hub_model_id: Optional[str] = field(default=None, metadata={"help": "The name of the model on HF Hub"})
77
+
78
+ parser = HfArgumentParser(ScriptArguments)
79
+ script_args = parser.parse_args_into_dataclasses()[0]
80
+
81
+ # # Step 1: Load the dataset
82
+ df_path = "/mnt/data1/Datasets/AlphaPen/" + "training_data.csv"
83
+ df = pd.read_csv(df_path)
84
+ df.dropna(inplace=True)
85
+ train_df, test_df = train_test_split(df, test_size=0.15, random_state=0)
86
+ # we reset the indices to start from zero
87
+ train_df.reset_index(drop=True, inplace=True)
88
+ test_df.reset_index(drop=True, inplace=True)
89
+ root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
90
+ processor = TrOCRProcessor.from_pretrained(script_args.model_name)
91
+
92
+
93
+
94
+ train_dataset = AphaPenDataset(root_dir=root_dir, df=train_df, processor=processor)
95
+ eval_dataset = AphaPenDataset(root_dir=root_dir, df=test_df, processor=processor)
96
+
97
+ # Step 2: Load the model
98
+ if script_args.load_in_8bit and script_args.load_in_4bit:
99
+ raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
100
+ elif script_args.load_in_8bit or script_args.load_in_4bit:
101
+ quantization_config = BitsAndBytesConfig(
102
+ load_in_8bit=script_args.load_in_8bit, load_in_4bit=script_args.load_in_4bit
103
+ )
104
+ # Copy the model to each device
105
+ device_map = (
106
+ {"": f"xpu:{Accelerator().local_process_index}"}
107
+ if is_xpu_available()
108
+ else {"": Accelerator().local_process_index}
109
+ )
110
+ torch_dtype = torch.bfloat16
111
+ else:
112
+ device_map = None
113
+ quantization_config = None
114
+ torch_dtype = None
115
+
116
+ model = VisionEncoderDecoderModel.from_pretrained(
117
+ script_args.model_name,
118
+ quantization_config=quantization_config,
119
+ device_map=device_map,
120
+ trust_remote_code=script_args.trust_remote_code,
121
+ torch_dtype=torch_dtype,
122
+ token=script_args.use_auth_token,
123
+ )
124
+
125
+ # set special tokens used for creating the decoder_input_ids from the labels
126
+ model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
127
+ model.config.pad_token_id = processor.tokenizer.pad_token_id
128
+ # make sure vocab size is set correctly
129
+ model.config.vocab_size = model.config.decoder.vocab_size
130
+
131
+ # set beam search parameters
132
+ model.config.eos_token_id = processor.tokenizer.sep_token_id
133
+ model.config.max_length = script_args.max_length
134
+ model.config.early_stopping = script_args.early_stopping
135
+ model.config.no_repeat_ngram_size = script_args.no_repeat_ngram_size
136
+ model.config.length_penalty = script_args.length_penalty
137
+ model.config.num_beams = script_args.num_beams
138
+
139
+ tokenizer = processor.tokenizer
140
+ sim = CERSimilarity(tokenizer)
141
+ loss = MarginLoss(sim, beta=0.1, num_samples=60)
142
+ reg = KLRegularization(model)
143
+ calibrator = EncoderDecoderCalibrator(model, loss, reg, 15, 15)
144
+
145
+
146
+ # # Step 3: Define the training arguments
147
+ training_args = Seq2SeqTrainingArguments(
148
+ predict_with_generate=True,
149
+ evaluation_strategy="steps",
150
+ per_device_train_batch_size=script_args.batch_size,
151
+ per_device_eval_batch_size=script_args.batch_size,
152
+ fp16=True,
153
+ output_dir=script_args.output_dir,
154
+ logging_steps=script_args.logging_steps,
155
+ save_steps=script_args.save_steps,
156
+ eval_steps=100,
157
+ save_total_limit=script_args.save_total_limit,
158
+ # load_best_model_at_end = True,
159
+ report_to=script_args.log_with,
160
+ num_train_epochs=script_args.num_train_epochs,
161
+ push_to_hub=script_args.push_to_hub,
162
+ hub_model_id=script_args.hub_model_id,
163
+ gradient_checkpointing=script_args.gradient_checkpointing,
164
+ # metric_for_best_model="eval/cer"
165
+ # TODO: uncomment that on the next release
166
+ # gradient_checkpointing_kwargs=script_args.gradient_checkpointing_kwargs,
167
+ )
168
+
169
+
170
+ # Step 4: Define a metric
171
+
172
+ def compute_metrics(pred):
173
+ # accuracy_metric = evaluate.load("precision")
174
+ cer_metric = evaluate.load("cer")
175
+
176
+ labels_ids = pred.label_ids
177
+ pred_ids = pred.predictions
178
+
179
+ pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
180
+ labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
181
+ label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
182
+
183
+ cer = cer_metric.compute(predictions=pred_str, references=label_str)
184
+ # accuracy = accuracy_metric.compute(predictions=pred_ids.tolist(), references=labels_ids.tolist())
185
+
186
+ return {"cer": cer}
187
+
188
+ early_stop = EarlyStoppingCallback(10, .001)
189
+ # # Step 5: Define the Trainer
190
+ trainer = Seq2SeqTrainer(
191
+ model=model,
192
+ tokenizer=processor.feature_extractor,
193
+ args=training_args,
194
+ compute_metrics=compute_metrics,
195
+ train_dataset=train_dataset,
196
+ eval_dataset=eval_dataset,
197
+ data_collator=default_data_collator,
198
+ # callbacks = [early_stop]
199
+ )
200
+
201
+ trainer.train()
202
+
203
+ # # Step 6: Save the model
204
+ # trainer.save_model(script_args.output_dir)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b14472ca382e9d96ea7efd3c778cbf0b73a412e31bc41cfec8d97e8988e6063d
3
+ size 1335747032
model_sft.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from dataclasses import dataclass, field
3
+ from typing import Optional
4
+ import pandas as pd
5
+
6
+ import torch
7
+ from accelerate import Accelerator
8
+ from datasets import load_dataset, Dataset, load_metric
9
+ from peft import LoraConfig
10
+ from tqdm import tqdm
11
+ from transformers import AutoModelForCausalLM, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, VisionEncoderDecoderModel, TrOCRProcessor, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator, EarlyStoppingCallback
12
+
13
+
14
+ from trl import SFTTrainer, is_xpu_available
15
+ from data import AphaPenDataset
16
+ import evaluate
17
+ from sklearn.model_selection import train_test_split
18
+
19
+ import torchvision.transforms as transforms
20
+ # from utils import compute_metrics
21
+
22
+ tqdm.pandas()
23
+
24
+
25
+ # Define and parse arguments.
26
+ @dataclass
27
+ class ScriptArguments:
28
+ """
29
+ The name of the OCR model we wish to fine with Seq2SeqTrainer
30
+ """
31
+
32
+ model_name: Optional[str] = field(default="microsoft/trocr-base-handwritten", metadata={"help": "the model name"})
33
+ dataset_name: Optional[str] = field(
34
+ default="Anthropic/hh-rlhf", metadata={"help": "the dataset name"}
35
+ )
36
+ log_with: Optional[str] = field(default="none", metadata={"help": "use 'wandb' to log with wandb"})
37
+ learning_rate: Optional[float] = field(default=1.41e-5, metadata={"help": "the learning rate"})
38
+ batch_size: Optional[int] = field(default=8, metadata={"help": "the batch size"})
39
+ seq_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})
40
+ gradient_accumulation_steps: Optional[int] = field(
41
+ default=16, metadata={"help": "the number of gradient accumulation steps"}
42
+ )
43
+ load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
44
+ load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
45
+ use_peft: Optional[bool] = field(default=False, metadata={"help": "Wether to use PEFT or not to train adapters"})
46
+ trust_remote_code: Optional[bool] = field(default=False, metadata={"help": "Enable `trust_remote_code`"})
47
+ output_dir: Optional[str] = field(default="output", metadata={"help": "the output directory"})
48
+ peft_lora_r: Optional[int] = field(default=64, metadata={"help": "the r parameter of the LoRA adapters"})
49
+ peft_lora_alpha: Optional[int] = field(default=16, metadata={"help": "the alpha parameter of the LoRA adapters"})
50
+ logging_steps: Optional[int] = field(default=1, metadata={"help": "the number of logging steps"})
51
+ use_auth_token: Optional[bool] = field(default=True, metadata={"help": "Use HF auth token to access the model"})
52
+ num_train_epochs: Optional[int] = field(default=3, metadata={"help": "the number of training epochs"})
53
+ max_steps: Optional[int] = field(default=-1, metadata={"help": "the number of training steps"})
54
+ max_length: Optional[int] = field(default=10, metadata={"help": "the maximum length"})
55
+ no_repeat_ngram_size: Optional[int] = field(default=3, metadata={"help": "the number of repeat"})
56
+ length_penalty: Optional[float] = field(default=2.0, metadata={"help": "the length of penalty"})
57
+ num_beams: Optional[int] = field(default=3, metadata={"help": "the number of beam search"})
58
+ early_stopping: Optional[bool] = field(default=True, metadata={"help": "Early stopping"})
59
+ save_steps: Optional[int] = field(
60
+ default=1000, metadata={"help": "Number of updates steps before two checkpoint saves"}
61
+ )
62
+ save_total_limit: Optional[int] = field(default=10, metadata={"help": "Limits total number of checkpoints."})
63
+ push_to_hub: Optional[bool] = field(default=False, metadata={"help": "Push the model to HF Hub"})
64
+ gradient_checkpointing: Optional[bool] = field(
65
+ default=False, metadata={"help": "Whether to use gradient checkpointing or no"}
66
+ )
67
+ gradient_checkpointing_kwargs: Optional[dict] = field(
68
+ default=None,
69
+ metadata={
70
+ "help": "key word arguments to be passed along `torch.utils.checkpoint.checkpoint` method - e.g. `use_reentrant=False`"
71
+ },
72
+ )
73
+ hub_model_id: Optional[str] = field(default=None, metadata={"help": "The name of the model on HF Hub"})
74
+
75
+ parser = HfArgumentParser(ScriptArguments)
76
+ script_args = parser.parse_args_into_dataclasses()[0]
77
+
78
+ # # Step 1: Load the dataset
79
+ df_path = "/mnt/data1/Datasets/AlphaPen/" + "training_data.csv"
80
+ df = pd.read_csv(df_path)
81
+ df.dropna(inplace=True)
82
+ train_df, test_df = train_test_split(df, test_size=0.15, random_state=0)
83
+ # we reset the indices to start from zero
84
+ train_df.reset_index(drop=True, inplace=True)
85
+ test_df.reset_index(drop=True, inplace=True)
86
+ root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
87
+ processor = TrOCRProcessor.from_pretrained(script_args.model_name)
88
+
89
+ # Transformation for training including augmentations
90
+ transform = transforms.Compose([
91
+ transforms.PILToTensor(),
92
+ transforms.RandomRotation(degrees=(0, 180))
93
+ ])
94
+
95
+
96
+
97
+ train_dataset = AphaPenDataset(root_dir=root_dir, df=train_df, processor=processor, transform=transform)
98
+ eval_dataset = AphaPenDataset(root_dir=root_dir, df=test_df, processor=processor)
99
+
100
+ # Step 2: Load the model
101
+ if script_args.load_in_8bit and script_args.load_in_4bit:
102
+ raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
103
+ elif script_args.load_in_8bit or script_args.load_in_4bit:
104
+ quantization_config = BitsAndBytesConfig(
105
+ load_in_8bit=script_args.load_in_8bit, load_in_4bit=script_args.load_in_4bit
106
+ )
107
+ # Copy the model to each device
108
+ device_map = (
109
+ {"": f"xpu:{Accelerator().local_process_index}"}
110
+ if is_xpu_available()
111
+ else {"": Accelerator().local_process_index}
112
+ )
113
+ torch_dtype = torch.bfloat16
114
+ else:
115
+ device_map = None
116
+ quantization_config = None
117
+ torch_dtype = None
118
+
119
+ model = VisionEncoderDecoderModel.from_pretrained(
120
+ script_args.model_name,
121
+ quantization_config=quantization_config,
122
+ device_map=device_map,
123
+ trust_remote_code=script_args.trust_remote_code,
124
+ torch_dtype=torch_dtype,
125
+ token=script_args.use_auth_token,
126
+ )
127
+
128
+ # set special tokens used for creating the decoder_input_ids from the labels
129
+ model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
130
+ model.config.pad_token_id = processor.tokenizer.pad_token_id
131
+ # make sure vocab size is set correctly
132
+ model.config.vocab_size = model.config.decoder.vocab_size
133
+
134
+ # set beam search parameters
135
+ model.config.eos_token_id = processor.tokenizer.sep_token_id
136
+ model.config.max_length = script_args.max_length
137
+ model.config.early_stopping = script_args.early_stopping
138
+ model.config.no_repeat_ngram_size = script_args.no_repeat_ngram_size
139
+ model.config.length_penalty = script_args.length_penalty
140
+ model.config.num_beams = script_args.num_beams
141
+
142
+
143
+
144
+
145
+ # # Step 3: Define the training arguments
146
+ training_args = Seq2SeqTrainingArguments(
147
+ predict_with_generate=True,
148
+ evaluation_strategy="steps",
149
+ # per_device_train_batch_size=script_args.batch_size,
150
+ # per_device_eval_batch_size=script_args.batch_size,
151
+ fp16=True,
152
+ output_dir=script_args.output_dir,
153
+ logging_steps=script_args.logging_steps,
154
+ save_steps=script_args.save_steps,
155
+ eval_steps=100,
156
+ save_total_limit=script_args.save_total_limit,
157
+ load_best_model_at_end = True,
158
+ report_to=script_args.log_with,
159
+ num_train_epochs=script_args.num_train_epochs,
160
+ push_to_hub=script_args.push_to_hub,
161
+ hub_model_id=script_args.hub_model_id,
162
+ gradient_checkpointing=script_args.gradient_checkpointing,
163
+ auto_find_batch_size=True,
164
+ metric_for_best_model="eval/cer"
165
+ # TODO: uncomment that on the next release
166
+ # gradient_checkpointing_kwargs=script_args.gradient_checkpointing_kwargs,
167
+ )
168
+
169
+
170
+ # Step 4: Define a metric
171
+
172
+ def compute_metrics(pred):
173
+ # accuracy_metric = evaluate.load("precision")
174
+ cer_metric = evaluate.load("cer")
175
+
176
+ labels_ids = pred.label_ids
177
+ pred_ids = pred.predictions
178
+
179
+ pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
180
+ labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
181
+ label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
182
+
183
+ cer = cer_metric.compute(predictions=pred_str, references=label_str)
184
+ # accuracy = accuracy_metric.compute(predictions=pred_ids.tolist(), references=labels_ids.tolist())
185
+
186
+ return {"cer": cer}
187
+
188
+ early_stop = EarlyStoppingCallback(10, .001)
189
+
190
+ # Step 5: Define the LoraConfig
191
+ if script_args.use_peft:
192
+ peft_config = LoraConfig(
193
+ r=script_args.peft_lora_r,
194
+ lora_alpha=script_args.peft_lora_alpha,
195
+ bias="none",
196
+ task_type="CAUSAL_LM",
197
+ target_modules="all-linear"
198
+ )
199
+ else:
200
+ peft_config = None
201
+ # # Step 6: Define the Trainer
202
+ trainer = SFTTrainer(
203
+ model=model,
204
+ tokenizer=processor.feature_extractor,
205
+ args=training_args,
206
+ compute_metrics=compute_metrics,
207
+ train_dataset=train_dataset,
208
+ eval_dataset=eval_dataset,
209
+ data_collator=default_data_collator,
210
+ peft_config=peft_config,
211
+ callbacks=[EarlyStoppingCallback(early_stopping_patience=10)]
212
+ )
213
+
214
+ trainer.train()
215
+
216
+ # # Step 6: Save the model
217
+ # trainer.save_model(script_args.output_dir)
phi3/checkpoint-25/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "HuggingFaceM4/idefics2-8b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": false,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": ".*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$",
23
+ "task_type": null,
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
phi3/checkpoint-25/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c804cede36291fb0feb5cee74f4ffeeaec1178864af130c873b410c6f1fe1a18
3
+ size 746528304
phi3/checkpoint-25/generation_config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bad_words_ids": [
4
+ [
5
+ 32000
6
+ ],
7
+ [
8
+ 32001
9
+ ]
10
+ ],
11
+ "bos_token_id": 1,
12
+ "eos_token_id": [
13
+ 2,
14
+ 32002
15
+ ],
16
+ "pad_token_id": 0,
17
+ "transformers_version": "4.42.3"
18
+ }
phi3/checkpoint-25/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d93bc5e374a2ab92fce0a68bbe1800baf7f1ea49f5528c1bd22a6bb987d7a79
3
+ size 374547732
phi3/checkpoint-25/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bc84e110eb9a1be206e02c97bf5c5d7133033f306401f2e818d8847834cab9f
3
+ size 14244
phi3/checkpoint-25/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:630fe59a784956405be1a950d9ce52e5bf6a2f1c12f3a8bd4f3869766a5850cd
3
+ size 1064
phi3/checkpoint-25/trainer_state.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.008670019074041963,
5
+ "eval_steps": 10,
6
+ "global_step": 25,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0017340038148083927,
13
+ "grad_norm": 11.838030815124512,
14
+ "learning_rate": 0.00017600000000000002,
15
+ "loss": 12.8857,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.0034680076296167853,
20
+ "grad_norm": 0.8977920413017273,
21
+ "learning_rate": 0.00013600000000000003,
22
+ "loss": 0.6798,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.0034680076296167853,
27
+ "eval_loss": 0.2337629497051239,
28
+ "eval_runtime": 675.29,
29
+ "eval_samples_per_second": 13.597,
30
+ "eval_steps_per_second": 1.7,
31
+ "step": 10
32
+ },
33
+ {
34
+ "epoch": 0.0052020114444251775,
35
+ "grad_norm": 0.34665364027023315,
36
+ "learning_rate": 9.6e-05,
37
+ "loss": 0.1571,
38
+ "step": 15
39
+ },
40
+ {
41
+ "epoch": 0.006936015259233571,
42
+ "grad_norm": 0.26853781938552856,
43
+ "learning_rate": 5.6000000000000006e-05,
44
+ "loss": 0.1088,
45
+ "step": 20
46
+ },
47
+ {
48
+ "epoch": 0.006936015259233571,
49
+ "eval_loss": 0.09983003884553909,
50
+ "eval_runtime": 686.1959,
51
+ "eval_samples_per_second": 13.381,
52
+ "eval_steps_per_second": 1.673,
53
+ "step": 20
54
+ },
55
+ {
56
+ "epoch": 0.008670019074041963,
57
+ "grad_norm": 0.22648762166500092,
58
+ "learning_rate": 1.6000000000000003e-05,
59
+ "loss": 0.0911,
60
+ "step": 25
61
+ }
62
+ ],
63
+ "logging_steps": 5,
64
+ "max_steps": 25,
65
+ "num_input_tokens_seen": 0,
66
+ "num_train_epochs": 1,
67
+ "save_steps": 25,
68
+ "stateful_callbacks": {
69
+ "TrainerControl": {
70
+ "args": {
71
+ "should_epoch_stop": false,
72
+ "should_evaluate": false,
73
+ "should_log": false,
74
+ "should_save": true,
75
+ "should_training_stop": true
76
+ },
77
+ "attributes": {}
78
+ }
79
+ },
80
+ "total_flos": 1803863725327872.0,
81
+ "train_batch_size": 8,
82
+ "trial_name": null,
83
+ "trial_params": null
84
+ }
phi3/checkpoint-25/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f453fa98240e7ba800f54183433d2dfc198cd72c7267c34a5547639a1d49da5c
3
+ size 5112
phi3_ocr.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Example inspired from https://huggingface.co/microsoft/Phi-3-vision-128k-instruct
2
+
3
+ # Import necessary libraries
4
+ from PIL import Image
5
+ import requests
6
+ from transformers import AutoModelForCausalLM
7
+ from transformers import AutoProcessor
8
+ from transformers import BitsAndBytesConfig
9
+ from transformers import TrOCRProcessor, VisionEncoderDecoderModel
10
+ import torch
11
+ import pandas as pd
12
+ from torchmetrics.text import CharErrorRate
13
+ from peft import PeftModel, PeftConfig
14
+
15
+ # Define model ID
16
+ model_id = "microsoft/Phi-3-vision-128k-instruct"
17
+ peft_model_id = "hadrakey/alphapen_phi3"
18
+ peft_model_id_new = "hadrakey/alphapen_new_large"
19
+
20
+ # Load processor
21
+ processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
22
+
23
+ # phi3 finetuned
24
+ # config = PeftConfig.from_pretrained(peft_model_id)
25
+
26
+ # processor_fine = AutoProcessor.from_pretrained(config.base_model_name_or_path, trust_remote_code=True)
27
+
28
+ # Finetuned model
29
+ # config_new = PeftConfig.from_pretrained(peft_model_id_new)
30
+ model_finetune = VisionEncoderDecoderModel.from_pretrained("hadrakey/alphapen_large")
31
+ # model_new_finetune = AutoModelForCausalLM.from_pretrained(config_new.base_model_name_or_path, device_map="auto", trust_remote_code=True, torch_dtype="auto")
32
+
33
+ # model_finetune_phi3 = AutoModelForCausalLM.from_pretrained("hadrakey/alphapen_phi3", trust_remote_code=True)
34
+
35
+ #Baseline
36
+ model_base = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
37
+
38
+
39
+ processor_ocr = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
40
+ # processor_ocr_new = AutoProcessor.from_pretrained(config_new.base_model_name_or_path, device_map="auto", trust_remote_code=True, torch_dtype="auto")
41
+ # Define BitsAndBytes configuration for 4-bit quantization
42
+ nf4_config = BitsAndBytesConfig(
43
+ load_in_4bit=True,
44
+ bnb_4bit_quant_type="nf4",
45
+ bnb_4bit_use_double_quant=True,
46
+ bnb_4bit_compute_dtype=torch.bfloat16,
47
+ )
48
+
49
+ # Load model with 4-bit quantization and map to CUDA
50
+ model = AutoModelForCausalLM.from_pretrained(
51
+ model_id,
52
+ device_map="cuda",
53
+ trust_remote_code=True,
54
+ torch_dtype="auto",
55
+ quantization_config=nf4_config,
56
+ )
57
+
58
+ # base_model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map="auto", trust_remote_code=True, torch_dtype="auto")
59
+
60
+ # model_finetune_phi3 = PeftModel.from_pretrained(base_model, peft_model_id)
61
+ # Define initial chat message with image placeholder
62
+ messages = [{"role": "user", "content": """<|image_1|>\nThis image contains handwritten French characters forming a complete or partial word. The image is blurred, which makes recognition challenging. Please analyze the image to the best of your ability and provide your best guess of the French word or partial word shown, even if you're not certain. Follow these guidelines:
63
+
64
+ 1. Examine the overall shape and any discernible character features.
65
+ 2. Consider common French letter combinations and word patterns.
66
+ 3. If you can only identify some characters, provide those as a partial word.
67
+ 4. Make an educated guess based on what you can see, even if it's just a few letters.
68
+ 5. If you can see any characters at all, avoid responding with "indiscernible."
69
+
70
+ Your response should be only the predicted French word or partial word, using lowercase letters unless capital letters are clearly visible. If you can see any characters or shapes at all, provide the OCR from the image.
71
+ """}]
72
+
73
+ # messages = [{"role": "user", "content": """<|image_1|>\nWhat is shown is this images ? You should only output only your guess otherwise output the OCR.
74
+ # """}]
75
+
76
+ # Download image from URL
77
+ url = "https://images.unsplash.com/photo-1528834342297-fdefb9a5a92b?ixlib=rb-4.0.3&q=85&fm=jpg&crop=entropy&cs=srgb&dl=roonz-nl-vjDbHCjHlEY-unsplash.jpg&w=640"
78
+ # image = Image.open(requests.get(url, stream=True).raw)
79
+
80
+ df_path = "/mnt/data1/Datasets/AlphaPen/" + "testing_data.csv"
81
+ data = pd.read_csv(df_path)
82
+ data.dropna(inplace=True)
83
+ data.reset_index(inplace=True)
84
+ sample = data.iloc[:5000,:]
85
+ root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/"
86
+ # Prepare prompt with image token
87
+ prompt = processor.tokenizer.apply_chat_template(
88
+ messages, tokenize=False, add_generation_prompt=True
89
+ )
90
+ cer_metric = CharErrorRate()
91
+ phi_output=[]
92
+ phi_finetune_output=[]
93
+ inf_baseline = []
94
+ inf_finetune = []
95
+ inf_finetune_new = []
96
+
97
+ cer_phi = []
98
+ cer_phi_finetune = []
99
+ cer_trocr_fine_new = []
100
+ cer_trocr_fine = []
101
+ cer_trocr_base = []
102
+ for idx in range(len(sample)):
103
+
104
+ # idx=30 # choose the image
105
+ image = Image.open(root_dir + "final_cropped_rotated_" + data.filename[idx]).convert("RGB")
106
+
107
+ # Process prompt and image for model input
108
+ inputs = processor(prompt, [image], return_tensors="pt").to("cuda:0")
109
+
110
+ # Generate text response using model
111
+ generate_ids = model.generate(
112
+ **inputs,
113
+ eos_token_id=processor.tokenizer.eos_token_id,
114
+ max_new_tokens=500,
115
+ do_sample=False,
116
+ )
117
+
118
+ # Remove input tokens from generated response
119
+ generate_ids = generate_ids[:, inputs["input_ids"].shape[1] :]
120
+
121
+ # Decode generated IDs to text
122
+ response = processor.batch_decode(
123
+ generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
124
+ )[0]
125
+ phi_output.append(response)
126
+ cer_phi.append(cer_metric(response.lower(), data.text[idx].lower()).detach().numpy())
127
+
128
+ # Generate text response using model finetuned
129
+ # generate_ids_fine = model_finetune_phi3.generate(
130
+ # **inputs,
131
+ # eos_token_id=processor.tokenizer.eos_token_id,
132
+ # max_new_tokens=500,
133
+ # do_sample=False,
134
+ # )
135
+
136
+ # # Remove input tokens from generated response
137
+ # inputs = processor_fine(prompt, [image], return_tensors="pt").to("cuda:0")
138
+ # generate_ids_fine = generate_ids_fine[:, inputs["input_ids"].shape[1] :]
139
+
140
+ # Decode generated IDs to text
141
+ # response = processor.batch_decode(
142
+ # generate_ids_fine, skip_special_tokens=True, clean_up_tokenization_spaces=False
143
+ # )[0]
144
+ # phi_finetune_output.append(response)
145
+ # cer_phi_finetune.append(cer_metric(response, data.text[idx]).detach().numpy())
146
+
147
+ # Trocr
148
+ pixel_values = processor_ocr(image, return_tensors="pt").pixel_values
149
+ generated_ids_base = model_base.generate(pixel_values)
150
+ generated_ids_fine = model_finetune.generate(pixel_values)
151
+ # generated_ids_fine_new = model_finetune_new.generate(pixel_values)
152
+ generated_text_base = processor_ocr.batch_decode(generated_ids_base, skip_special_tokens=True)[0]
153
+ generated_text_fine= processor_ocr.batch_decode(generated_ids_fine, skip_special_tokens=True)[0]
154
+ # generated_text_fine_new= processor_ocr_new.batch_decode(generated_ids_fine_new, skip_special_tokens=True)[0]
155
+
156
+ inf_baseline.append(generated_text_base)
157
+ inf_finetune.append(generated_text_fine)
158
+ # inf_finetune_new.append(generated_text_fine_new)
159
+
160
+ # cer_trocr_fine_new.append(cer_metric(generated_text_fine_new, data.text[idx]).detach().numpy())
161
+ cer_trocr_fine.append(cer_metric(generated_text_fine.lower(), data.text[idx].lower()).detach().numpy())
162
+ cer_trocr_base.append(cer_metric(generated_text_base.lower(), data.text[idx].lower()).detach().numpy())
163
+
164
+
165
+ # Print the generated response
166
+ sample["phi3"]=phi_output
167
+ # sample["phi3_fine"]=phi_finetune_output
168
+ sample["Baseline"]=inf_baseline
169
+ sample["Finetune"]=inf_finetune
170
+ # sample["Finetune_new"]=inf_finetune_new
171
+ sample["cer_phi"]=cer_phi
172
+ # sample["cer_phi_fine"]=cer_phi_finetune
173
+ sample["cer_trocr_base"]=cer_trocr_base
174
+ sample["cer_trocr_fine"]=cer_trocr_fine
175
+ # sample["cer_trocr_fine_new"]=cer_trocr_fine_new
176
+ sample.to_csv("/mnt/data1/Datasets/AlphaPen/" + "sample_data.csv")