File size: 6,407 Bytes
9c909e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48aa1da
 
9c909e3
48aa1da
9c909e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

from dataclasses import dataclass, field
from typing import Optional
import pandas as pd
import os

import torch
from transformers import VisionEncoderDecoderModel, TrOCRProcessor, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator, EarlyStoppingCallback, TrainerCallback, TrainingArguments, TrainerState, TrainerControl
from peft import LoraConfig, get_peft_model
from transformers import VisionEncoderDecoderConfig

from data import AphaPenDataset
import evaluate
from sklearn.model_selection import train_test_split

from src.calibrator import EncoderDecoderCalibrator
from src.loss import MarginLoss, KLRegularization
from src.similarity import CERSimilarity
from datetime import datetime
from torch.utils.data import ConcatDataset
import wandb



# @dataclass
# class ScriptArguments:
#     """
#     The name of the OCR model we wish to fine with Seq2SeqTrainer
#     """
#     samp_size: Optional[int] = field(default=0, metadata={"help": "the additional sample size"})

# parser = HfArgumentParser(ScriptArguments)
# script_args = parser.parse_args_into_dataclasses()[0]

samp_list = [1, 15000, 30000, 45000, 60000, 70000]


model_name = "microsoft/trocr-large-handwritten"
# # Step 1: Load the dataset
df_path = "/mnt/data1/Datasets/AlphaPen/" + "training_data.csv"
df = pd.read_csv(df_path)
df.dropna(inplace=True)
train_df, test_df = train_test_split(df, test_size=0.02, random_state=0)
# we reset the indices to start from zero
train_df.reset_index(drop=True, inplace=True)
test_df.reset_index(drop=True, inplace=True)

df_path_b2= "/mnt/data1/Datasets/AlphaPen/" + "training_b2.csv"
df_b2 = pd.read_csv(df_path_b2)
df_b2.dropna(inplace=True)
train_df_b2, test_df_b2 = train_test_split(df_b2, test_size=0.01, random_state=0)
# we reset the indices to start from zero
train_df_b2.reset_index(drop=True, inplace=True)
test_df_b2.reset_index(drop=True, inplace=True)

root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
root_dir_b2 = "/mnt/data1/Datasets/OCR/Alphapen/DataBatch2/clean_data/cropped_data/cropped_"
processor = TrOCRProcessor.from_pretrained(model_name)

train_dataset_b1 = AphaPenDataset(root_dir=root_dir, df=train_df,  processor=processor)
eval_dataset_b1 = AphaPenDataset(root_dir=root_dir, df=test_df,  processor=processor)

eval_dataset_b2 = AphaPenDataset(root_dir=root_dir_b2, df=test_df_b2,  processor=processor)

# train_dataset = ConcatDataset([train_dataset_b1, train_dataset_b2])
eval_dataset = ConcatDataset([eval_dataset_b1, eval_dataset_b2])


# config = VisionEncoderDecoderConfig.from_pretrained(model_name)
# config.decoder.vocab_size = config.decoder.decoder_vocab_size
# Step 2: Load the model
model = VisionEncoderDecoderModel.from_pretrained(model_name)

# set special tokens used for creating the decoder_input_ids from the labels
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id
# make sure vocab size is set correctly
# model.config.vocab_size = model.config.decoder.vocab_size
# for peft
# model.vocab_size = model.config.decoder.vocab_size

# set beam search parameters
model.config.eos_token_id = processor.tokenizer.sep_token_id
model.config.max_length = 64
model.config.early_stopping = True
model.config.no_repeat_ngram_size = 3
model.config.length_penalty = 2.0
model.config.num_beams = 4

# print(model.config)
# LoRa
lora_config = LoraConfig(
    r=1,
    lora_alpha=8,
    lora_dropout=0.1,
    target_modules=[
        'query',
        'key',
        'value',
        'intermediate.dense',
        'output.dense',
        #'wte',
        #'wpe',
        #'c_attn',
        #'c_proj',
        #'q_attn',
        #'c_fc'
    ],
    # task_type="SEQ_2_SEQ_LM"
)
model = get_peft_model(model, lora_config)
# model.add_adapter(lora_config)
# print(model.config)

# tokenizer = processor.tokenizer
# sim = CERSimilarity(tokenizer)
# loss = MarginLoss(sim, beta=0.1, num_samples=60)
# reg = KLRegularization(model)
# calibrator = EncoderDecoderCalibrator(model, loss, reg, 15, 15)

# from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
for samp in samp_list:
    os.environ["WANDB_PROJECT"] = "Alphapen-TrOCR"
    train_dataset_b2 = AphaPenDataset(root_dir=root_dir_b2, df=train_df_b2.iloc[:samp,:],  processor=processor)

    train_dataset = ConcatDataset([train_dataset_b1, train_dataset_b2])

        
    # # Step 3: Define the training arguments
    training_args = Seq2SeqTrainingArguments(
        predict_with_generate=True,
        evaluation_strategy="steps",
        per_device_train_batch_size=8,
        per_device_eval_batch_size=8,
        bf16=True,
        bf16_full_eval=True,
        output_dir="./",
        logging_steps=100,
        save_steps=1000,
        eval_steps=500,
        report_to="wandb",
        optim="adamw_torch_fused",
        lr_scheduler_type="cosine",
        gradient_accumulation_steps=2,
        learning_rate=1.0e-4,
        max_steps=15000,
        # run_name=f"trocr-LoRA-{datetime.now().strftime('%Y-%m-%d-%H-%M-%s')}",
        run_name="trocr-LoRA-large_" + str(samp),
        push_to_hub=True,
        hub_model_id="hadrakey/alphapen_trocr_large_" + str(samp),
    )

    # Step 4: Define a metric

    def compute_metrics(pred):
        # accuracy_metric = evaluate.load("precision")
        cer_metric = evaluate.load("cer")

        labels_ids = pred.label_ids
        pred_ids = pred.predictions

        pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
        labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
        label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
        pred_str = [word.lower() for word in pred_str]
        label_str = [word.lower() for word in label_str]
        cer = cer_metric.compute(predictions=pred_str, references=label_str)
        # accuracy = accuracy_metric.compute(predictions=pred_ids.tolist(), references=labels_ids.tolist())

        return {"cer": cer}

    # # Step 5: Define the Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        tokenizer=processor.feature_extractor,
        args=training_args,
        compute_metrics=compute_metrics,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        data_collator=default_data_collator,
        # callbacks=[SavePeftModelCallback]
    )

    trainer.train()
    wandb.finish()