--- library_name: peft tags: - generated_from_trainer base_model: openaccess-ai-collective/tiny-mistral model-index: - name: axolotl-test results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)## axolotl config ```yaml base_model: openaccess-ai-collective/tiny-mistral flash_attention: true sequence_len: 1024 load_in_8bit: true adapter: lora lora_r: 32 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true val_set_size: 0.1 special_tokens: unk_token: bos_token: eos_token: datasets: - path: mhenrichsen/alpaca_2k_test type: alpaca num_epochs: 2 micro_batch_size: 2 gradient_accumulation_steps: 1 output_dir: temp_dir learning_rate: 0.00001 optimizer: adamw_torch lr_scheduler: cosine max_steps: 20 save_steps: 10 eval_steps: 10 hub_model_id: hamel/axolotl-test dataset_processes: 1 ``` # axolotl-test This model is a fine-tuned version of [openaccess-ai-collective/tiny-mistral](https://huggingface.co/openaccess-ai-collective/tiny-mistral) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 20 ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0 - Datasets 2.15.0 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: None - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0