--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 tags: - axolotl --- ### Model Description A model that can generate [Honeycomb Queries](https://www.honeycomb.io/blog/introducing-query-assistant). _fine-tuned by [Hamel Husain](https://hamel.dev)_ ## How to Get Started with the Model Make sure you install all dependencies ```bash pip install transformers datasets peft accelerate bitsandbytes safetensors --upgrade ``` Next, load the dependencies. ```python from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer model_id='hamel/hc-mistral-qlora-6' model = AutoPeftModelForCausalLM.from_pretrained(model_id).cuda() tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token ``` Next define a function that can help you with the prompt (alpaca style): ```python def prompt(nlq, cols): return f"""[INST] <> Honeycomb AI suggests queries based on user input and candidate columns. <> User Input: {nlq} Candidate Columns: {cols} [/INST] """ def prompt_tok(nlq, cols): _p = prompt(nlq, cols) input_ids = tokenizer(_p, return_tensors="pt", truncation=True).input_ids.cuda() out_ids = model.generate(input_ids=input_ids, max_new_tokens=5000, do_sample=False) return tokenizer.batch_decode(out_ids.detach().cpu().numpy(), skip_special_tokens=True)[0][len(_p):] ``` Next, make predictions ```python nlq = "Exception count by exception and caller" cols = ['error', 'exception.message', 'exception.type', 'exception.stacktrace', 'SampleRate', 'name', 'db.user', 'type', 'duration_ms', 'db.name', 'service.name', 'http.method', 'db.system', 'status_code', 'db.operation', 'library.name', 'process.pid', 'net.transport', 'messaging.system', 'rpc.system', 'http.target', 'db.statement', 'library.version', 'status_message', 'parent_name', 'aws.region', 'process.command', 'rpc.method', 'span.kind', 'serializer.name', 'net.peer.name', 'rpc.service', 'http.scheme', 'process.runtime.name', 'serializer.format', 'serializer.renderer', 'net.peer.port', 'process.runtime.version', 'http.status_code', 'telemetry.sdk.language', 'trace.parent_id', 'process.runtime.description', 'span.num_events', 'messaging.destination', 'net.peer.ip', 'trace.trace_id', 'telemetry.instrumentation_library', 'trace.span_id', 'span.num_links', 'meta.signal_type', 'http.route'] out = prompt_tok(nlq, cols) print(out) ``` ## Training Details See [this wandb run](https://wandb.ai/hamelsmu/hc-axolotl-mistral/runs/et2e62s4/overview?workspace=user-hamelsmu) ### Training Data ~90k synthetically generated honeycomb queries. ### Training Procedure Used [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl/tree/main), see [this config](configs/config.yml). ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0