hanAlex commited on
Commit
f97756d
·
verified ·
1 Parent(s): 4f106d4

Upload 4 files

Browse files
modeling_chatglm.py ADDED
@@ -0,0 +1,1137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+
3
+ import math
4
+ import sys
5
+ import torch
6
+ import torch.utils.checkpoint
7
+ import torch.nn.functional as F
8
+ from torch import nn
9
+ from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
10
+ from torch.nn.utils import skip_init
11
+ from typing import Optional, Tuple, Union, List, Dict, Any
12
+
13
+ from transformers.modeling_outputs import (
14
+ BaseModelOutputWithPast,
15
+ CausalLMOutputWithPast,
16
+ SequenceClassifierOutputWithPast,
17
+ )
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging, is_torch_npu_available
20
+ from transformers.generation.logits_process import LogitsProcessor
21
+ from transformers.generation.utils import ModelOutput
22
+
23
+ from .configuration_chatglm import ChatGLMConfig
24
+
25
+ try:
26
+ from transformers.utils import is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available
27
+
28
+ if is_flash_attn_2_available():
29
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
30
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
31
+ except:
32
+ pass
33
+
34
+ # flags required to enable jit fusion kernels
35
+
36
+ if sys.platform != 'darwin' and not is_torch_npu_available():
37
+ torch._C._jit_set_profiling_mode(False)
38
+ torch._C._jit_set_profiling_executor(False)
39
+ torch._C._jit_override_can_fuse_on_cpu(True)
40
+ torch._C._jit_override_can_fuse_on_gpu(True)
41
+
42
+ logger = logging.get_logger(__name__)
43
+
44
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
45
+ _CONFIG_FOR_DOC = "ChatGLMConfig"
46
+
47
+
48
+ def default_init(cls, *args, **kwargs):
49
+ return cls(*args, **kwargs)
50
+
51
+
52
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
53
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
54
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
55
+ scores.zero_()
56
+ scores[..., 198] = 5e4
57
+ return scores
58
+
59
+
60
+ def split_tensor_along_last_dim(
61
+ tensor: torch.Tensor,
62
+ num_partitions: int,
63
+ contiguous_split_chunks: bool = False,
64
+ ) -> List[torch.Tensor]:
65
+ """Split a tensor along its last dimension.
66
+
67
+ Arguments:
68
+ tensor: input tensor.
69
+ num_partitions: number of partitions to split the tensor
70
+ contiguous_split_chunks: If True, make each chunk contiguous
71
+ in memory.
72
+
73
+ Returns:
74
+ A list of Tensors
75
+ """
76
+ # Get the size and dimension.
77
+ last_dim = tensor.dim() - 1
78
+ last_dim_size = tensor.size()[last_dim] // num_partitions
79
+ # Split.
80
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
81
+ # Note: torch.split does not create contiguous tensors by default.
82
+ if contiguous_split_chunks:
83
+ return tuple(chunk.contiguous() for chunk in tensor_list)
84
+
85
+ return tensor_list
86
+
87
+
88
+ class RotaryEmbedding(nn.Module):
89
+ def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None):
90
+ super().__init__()
91
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
92
+ self.register_buffer("inv_freq", inv_freq)
93
+ self.dim = dim
94
+ self.original_impl = original_impl
95
+ self.rope_ratio = rope_ratio
96
+
97
+ def forward_impl(
98
+ self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
99
+ ):
100
+ """Enhanced Transformer with Rotary Position Embedding.
101
+
102
+ Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
103
+ transformers/rope/__init__.py. MIT License:
104
+ https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
105
+ """
106
+ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
107
+ base = base * self.rope_ratio
108
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
109
+
110
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
111
+ seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
112
+
113
+ # Calculate the product of position index and $\theta_i$
114
+ idx_theta = torch.outer(seq_idx, theta).float()
115
+
116
+ cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
117
+
118
+ # this is to mimic the behaviour of complex32, else we will get different results
119
+ if dtype in (torch.float16, torch.bfloat16, torch.int8):
120
+ cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
121
+ return cache
122
+
123
+ def forward(self, max_seq_len, offset=0):
124
+ return self.forward_impl(
125
+ max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
126
+ )
127
+
128
+
129
+ @torch.jit.script
130
+ def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
131
+ # x: [b, np, sq, hn]
132
+ b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
133
+ rot_dim = rope_cache.shape[-2] * 2
134
+ x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
135
+ # truncate to support variable sizes
136
+ rope_cache = rope_cache[:, :sq]
137
+ xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
138
+ rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
139
+ x_out2 = torch.stack(
140
+ [
141
+ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
142
+ xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
143
+ ],
144
+ -1,
145
+ )
146
+ x_out2 = x_out2.flatten(3)
147
+ return torch.cat((x_out2, x_pass), dim=-1)
148
+
149
+
150
+ class RMSNorm(torch.nn.Module):
151
+ def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
152
+ super().__init__()
153
+ self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
154
+ self.eps = eps
155
+
156
+ def forward(self, hidden_states: torch.Tensor):
157
+ input_dtype = hidden_states.dtype
158
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
159
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
160
+
161
+ return (self.weight * hidden_states).to(input_dtype)
162
+
163
+
164
+ class CoreAttention(torch.nn.Module):
165
+ def __init__(self, config: ChatGLMConfig, layer_number):
166
+ super(CoreAttention, self).__init__()
167
+ self.config = config
168
+ self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
169
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
170
+ if self.apply_query_key_layer_scaling:
171
+ self.attention_softmax_in_fp32 = True
172
+ self.layer_number = max(1, layer_number)
173
+ self.is_causal = True
174
+
175
+ projection_size = config.kv_channels * config.num_attention_heads
176
+
177
+ # Per attention head and per partition values.
178
+ self.hidden_size_per_partition = projection_size
179
+ self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
180
+ self.num_attention_heads_per_partition = config.num_attention_heads
181
+
182
+ coeff = None
183
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
184
+ if self.apply_query_key_layer_scaling:
185
+ coeff = self.layer_number
186
+ self.norm_factor *= coeff
187
+ self.coeff = coeff
188
+
189
+ self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
190
+
191
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
192
+ # [b, np, sq, sk]
193
+ output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
194
+
195
+ # [b, np, sq, hn] -> [b * np, sq, hn]
196
+ query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
197
+ # [b, np, sk, hn] -> [b * np, sk, hn]
198
+ key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
199
+
200
+ # preallocting input tensor: [b * np, sq, sk]
201
+ matmul_input_buffer = torch.empty(
202
+ output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
203
+ device=query_layer.device
204
+ )
205
+
206
+ # Raw attention scores. [b * np, sq, sk]
207
+ matmul_result = torch.baddbmm(
208
+ matmul_input_buffer,
209
+ query_layer, # [b * np, sq, hn]
210
+ key_layer.transpose(1, 2), # [b * np, hn, sk]
211
+ beta=0.0,
212
+ alpha=(1.0 / self.norm_factor),
213
+ )
214
+
215
+ # change view to [b, np, sq, sk]
216
+ attention_scores = matmul_result.view(*output_size)
217
+
218
+ # ===========================
219
+ # Attention probs and dropout
220
+ # ===========================
221
+
222
+ # attention scores and attention mask [b, np, sq, sk]
223
+ if self.attention_softmax_in_fp32:
224
+ attention_scores = attention_scores.float()
225
+ if self.coeff is not None:
226
+ attention_scores = attention_scores * self.coeff
227
+ if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
228
+ attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
229
+ device=attention_scores.device, dtype=torch.bool)
230
+ attention_mask.tril_()
231
+ attention_mask = ~attention_mask
232
+ if attention_mask is not None:
233
+ attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
234
+ attention_probs = F.softmax(attention_scores, dim=-1)
235
+ attention_probs = attention_probs.type_as(value_layer)
236
+
237
+ # This is actually dropping out entire tokens to attend to, which might
238
+ # seem a bit unusual, but is taken from the original Transformer paper.
239
+ attention_probs = self.attention_dropout(attention_probs)
240
+
241
+ # query layer shape: [b * np, sq, hn]
242
+ # value layer shape: [b, np, sk, hn]
243
+ # attention shape: [b, np, sq, sk]
244
+ # context layer shape: [b, np, sq, hn]
245
+ output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
246
+ # change view [b * np, sk, hn]
247
+ value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
248
+ # change view [b * np, sq, sk]
249
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
250
+ # matmul: [b * np, sq, hn]
251
+ context_layer = torch.bmm(attention_probs, value_layer)
252
+ # change view [b, np, sq, hn]
253
+ context_layer = context_layer.view(*output_size)
254
+ # [b, np, sq, hn] --> [b, sq, np, hn]
255
+ context_layer = context_layer.transpose(1, 2).contiguous()
256
+ # [b, sq, np, hn] --> [b, sq, hp]
257
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
258
+ context_layer = context_layer.reshape(*new_context_layer_shape)
259
+
260
+ return context_layer
261
+
262
+
263
+ class SdpaAttention(CoreAttention):
264
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
265
+ if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
266
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
267
+ is_causal=True,
268
+ dropout_p=self.config.attention_dropout if self.training else 0.0)
269
+ else:
270
+ if attention_mask is not None:
271
+ attention_mask = ~attention_mask
272
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
273
+ attention_mask,
274
+ dropout_p=self.config.attention_dropout if self.training else 0.0)
275
+ context_layer = context_layer.transpose(1, 2).contiguous()
276
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
277
+ context_layer = context_layer.reshape(*new_context_layer_shape)
278
+ return context_layer
279
+
280
+
281
+ def _get_unpad_data(attention_mask):
282
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
283
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
284
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
285
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
286
+ return (
287
+ indices,
288
+ cu_seqlens,
289
+ max_seqlen_in_batch,
290
+ )
291
+
292
+
293
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2
294
+ class FlashAttention2(CoreAttention):
295
+ def __init__(self, *args, **kwargs):
296
+ super().__init__(*args, **kwargs)
297
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
298
+
299
+ def forward(self, query_states, key_states, value_states, attention_mask):
300
+ query_states = query_states.transpose(1, 2)
301
+ key_states = key_states.transpose(1, 2)
302
+ value_states = value_states.transpose(1, 2)
303
+ batch_size, query_length = query_states.shape[:2]
304
+ if not self._flash_attn_uses_top_left_mask:
305
+ causal = self.is_causal
306
+ else:
307
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
308
+ causal = self.is_causal and query_length != 1
309
+ dropout = self.config.attention_dropout if self.training else 0.0
310
+ # Contains at least one padding token in the sequence
311
+ if attention_mask is not None:
312
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
313
+ query_states, key_states, value_states, attention_mask, query_length
314
+ )
315
+
316
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
317
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
318
+
319
+ attn_output_unpad = flash_attn_varlen_func(
320
+ query_states,
321
+ key_states,
322
+ value_states,
323
+ cu_seqlens_q=cu_seqlens_q,
324
+ cu_seqlens_k=cu_seqlens_k,
325
+ max_seqlen_q=max_seqlen_in_batch_q,
326
+ max_seqlen_k=max_seqlen_in_batch_k,
327
+ dropout_p=dropout,
328
+ softmax_scale=None,
329
+ causal=causal,
330
+ )
331
+
332
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
333
+ else:
334
+ attn_output = flash_attn_func(
335
+ query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal
336
+ )
337
+ attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous()
338
+ return attn_output
339
+
340
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
341
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
342
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
343
+
344
+ key_layer = index_first_axis(
345
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
346
+ )
347
+ value_layer = index_first_axis(
348
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
349
+ )
350
+ if query_length == kv_seq_len:
351
+ query_layer = index_first_axis(
352
+ query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim),
353
+ indices_k
354
+ )
355
+ cu_seqlens_q = cu_seqlens_k
356
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
357
+ indices_q = indices_k
358
+ elif query_length == 1:
359
+ max_seqlen_in_batch_q = 1
360
+ cu_seqlens_q = torch.arange(
361
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
362
+ ) # There is a memcpy here, that is very bad.
363
+ indices_q = cu_seqlens_q[:-1]
364
+ query_layer = query_layer.squeeze(1)
365
+ else:
366
+ # The -q_len: slice assumes left padding.
367
+ attention_mask = attention_mask[:, -query_length:]
368
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
369
+
370
+ return (
371
+ query_layer,
372
+ key_layer,
373
+ value_layer,
374
+ indices_q,
375
+ (cu_seqlens_q, cu_seqlens_k),
376
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
377
+ )
378
+
379
+
380
+ CORE_ATTENTION_CLASSES = {
381
+ "eager": CoreAttention,
382
+ "sdpa": SdpaAttention,
383
+ "flash_attention_2": FlashAttention2
384
+ }
385
+
386
+
387
+ class SelfAttention(torch.nn.Module):
388
+ """Parallel self-attention layer abstract class.
389
+
390
+ Self-attention layer takes input with size [s, b, h]
391
+ and returns output of the same size.
392
+ """
393
+
394
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
395
+ super(SelfAttention, self).__init__()
396
+ self.layer_number = max(1, layer_number)
397
+
398
+ self.projection_size = config.kv_channels * config.num_attention_heads
399
+
400
+ # Per attention head and per partition values.
401
+ self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
402
+ self.num_attention_heads_per_partition = config.num_attention_heads
403
+
404
+ self.multi_query_attention = config.multi_query_attention
405
+ self.qkv_hidden_size = 3 * self.projection_size
406
+ if self.multi_query_attention:
407
+ self.num_multi_query_groups_per_partition = config.multi_query_group_num
408
+ self.qkv_hidden_size = (
409
+ self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
410
+ )
411
+ self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
412
+ bias=config.add_bias_linear or config.add_qkv_bias,
413
+ device=device, **_config_to_kwargs(config)
414
+ )
415
+
416
+ self.core_attention = CORE_ATTENTION_CLASSES[config._attn_implementation](config, self.layer_number)
417
+
418
+ # Output.
419
+ self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
420
+ device=device, **_config_to_kwargs(config)
421
+ )
422
+
423
+ def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
424
+ if self.multi_query_attention:
425
+ num_attention_heads = self.num_multi_query_groups_per_partition
426
+ else:
427
+ num_attention_heads = self.num_attention_heads_per_partition
428
+ return torch.empty(
429
+ inference_max_sequence_len,
430
+ batch_size,
431
+ num_attention_heads,
432
+ self.hidden_size_per_attention_head,
433
+ dtype=dtype,
434
+ device=device,
435
+ )
436
+
437
+ def forward(
438
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
439
+ ):
440
+ # hidden_states: [b, sq, h]
441
+
442
+ # =================================================
443
+ # Pre-allocate memory for key-values for inference.
444
+ # =================================================
445
+ # =====================
446
+ # Query, Key, and Value
447
+ # =====================
448
+
449
+ # Attention heads [b, sq, h] --> [b, sq, (np * 3 * hn)]
450
+ mixed_x_layer = self.query_key_value(hidden_states)
451
+
452
+ if self.multi_query_attention:
453
+ (query_layer, key_layer, value_layer) = mixed_x_layer.split(
454
+ [
455
+ self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
456
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
457
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
458
+ ],
459
+ dim=-1,
460
+ )
461
+ query_layer = query_layer.view(
462
+ query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
463
+ )
464
+ key_layer = key_layer.view(
465
+ key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
466
+ )
467
+ value_layer = value_layer.view(
468
+ value_layer.size()[:-1]
469
+ + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
470
+ )
471
+ else:
472
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
473
+ (self.num_attention_heads_per_partition,
474
+ 3 * self.hidden_size_per_attention_head)
475
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
476
+
477
+ # [b, sq, np, 3 * hn] --> 3 [b, sq, np, hn]
478
+ (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
479
+
480
+ # [b, sq, np, hn] -> [b, np, sq, hn]
481
+ query_layer, key_layer, value_layer = [k.transpose(1, 2) for k in [query_layer, key_layer, value_layer]]
482
+
483
+ # apply relative positional encoding (rotary embedding)
484
+ if rotary_pos_emb is not None:
485
+ query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
486
+ key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
487
+
488
+ # adjust key and value for inference
489
+ if kv_cache is not None:
490
+ cache_k, cache_v = kv_cache
491
+ key_layer = torch.cat((cache_k, key_layer), dim=2)
492
+ value_layer = torch.cat((cache_v, value_layer), dim=2)
493
+ if use_cache:
494
+ if kv_cache is None:
495
+ kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
496
+ dim=1)
497
+ else:
498
+ kv_cache = (key_layer, value_layer)
499
+ else:
500
+ kv_cache = None
501
+
502
+ if self.multi_query_attention:
503
+ key_layer = key_layer.unsqueeze(2)
504
+ key_layer = key_layer.expand(
505
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
506
+ )
507
+ key_layer = key_layer.contiguous().view(
508
+ key_layer.size()[:1] + (self.num_attention_heads_per_partition,) + key_layer.size()[3:]
509
+ )
510
+ value_layer = value_layer.unsqueeze(2)
511
+ value_layer = value_layer.expand(
512
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
513
+ )
514
+ value_layer = value_layer.contiguous().view(
515
+ value_layer.size()[:1] + (self.num_attention_heads_per_partition,) + value_layer.size()[3:]
516
+ )
517
+
518
+ # ==================================
519
+ # core attention computation
520
+ # ==================================
521
+
522
+ context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
523
+
524
+ # =================
525
+ # Output. [sq, b, h]
526
+ # =================
527
+
528
+ output = self.dense(context_layer)
529
+
530
+ return output, kv_cache
531
+
532
+
533
+ def _config_to_kwargs(args):
534
+ common_kwargs = {
535
+ "dtype": args.torch_dtype,
536
+ }
537
+ return common_kwargs
538
+
539
+
540
+ class MLP(torch.nn.Module):
541
+ """MLP.
542
+
543
+ MLP will take the input with h hidden state, project it to 4*h
544
+ hidden dimension, perform nonlinear transformation, and project the
545
+ state back into h hidden dimension.
546
+ """
547
+
548
+ def __init__(self, config: ChatGLMConfig, device=None):
549
+ super(MLP, self).__init__()
550
+
551
+ self.add_bias = config.add_bias_linear
552
+
553
+ # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
554
+ self.dense_h_to_4h = nn.Linear(
555
+ config.hidden_size,
556
+ config.ffn_hidden_size * 2,
557
+ bias=self.add_bias,
558
+ device=device,
559
+ **_config_to_kwargs(config)
560
+ )
561
+
562
+ def swiglu(x):
563
+ x = torch.chunk(x, 2, dim=-1)
564
+ return F.silu(x[0]) * x[1]
565
+
566
+ self.activation_func = swiglu
567
+
568
+ # Project back to h.
569
+ self.dense_4h_to_h = nn.Linear(
570
+ config.ffn_hidden_size,
571
+ config.hidden_size,
572
+ bias=self.add_bias,
573
+ device=device,
574
+ **_config_to_kwargs(config)
575
+ )
576
+
577
+ def forward(self, hidden_states):
578
+ # [s, b, 4hp]
579
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
580
+ intermediate_parallel = self.activation_func(intermediate_parallel)
581
+ # [s, b, h]
582
+ output = self.dense_4h_to_h(intermediate_parallel)
583
+ return output
584
+
585
+
586
+ class GLMBlock(torch.nn.Module):
587
+ """A single transformer layer.
588
+
589
+ Transformer layer takes input with size [s, b, h] and returns an
590
+ output of the same size.
591
+ """
592
+
593
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
594
+ super(GLMBlock, self).__init__()
595
+ self.layer_number = layer_number
596
+
597
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
598
+
599
+ self.fp32_residual_connection = config.fp32_residual_connection
600
+
601
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
602
+ # Layernorm on the input data.
603
+ self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
604
+ dtype=config.torch_dtype)
605
+
606
+ # Self attention.
607
+ self.self_attention = SelfAttention(config, layer_number, device=device)
608
+ self.hidden_dropout = config.hidden_dropout
609
+
610
+ # Layernorm on the attention output
611
+ self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
612
+ dtype=config.torch_dtype)
613
+
614
+ # MLP
615
+ self.mlp = MLP(config, device=device)
616
+
617
+ def forward(
618
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
619
+ ):
620
+ # hidden_states: [s, b, h]
621
+
622
+ # Layer norm at the beginning of the transformer layer.
623
+ layernorm_output = self.input_layernorm(hidden_states)
624
+ # Self attention.
625
+ attention_output, kv_cache = self.self_attention(
626
+ layernorm_output,
627
+ attention_mask,
628
+ rotary_pos_emb,
629
+ kv_cache=kv_cache,
630
+ use_cache=use_cache
631
+ )
632
+
633
+ # Residual connection.
634
+ if self.apply_residual_connection_post_layernorm:
635
+ residual = layernorm_output
636
+ else:
637
+ residual = hidden_states
638
+
639
+ layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
640
+ layernorm_input = residual + layernorm_input
641
+
642
+ # Layer norm post the self attention.
643
+ layernorm_output = self.post_attention_layernorm(layernorm_input)
644
+
645
+ # MLP.
646
+ mlp_output = self.mlp(layernorm_output)
647
+
648
+ # Second residual connection.
649
+ if self.apply_residual_connection_post_layernorm:
650
+ residual = layernorm_output
651
+ else:
652
+ residual = layernorm_input
653
+
654
+ output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
655
+ output = residual + output
656
+
657
+ return output, kv_cache
658
+
659
+
660
+ class GLMTransformer(torch.nn.Module):
661
+ """Transformer class."""
662
+
663
+ def __init__(self, config: ChatGLMConfig, device=None):
664
+ super(GLMTransformer, self).__init__()
665
+
666
+ self.fp32_residual_connection = config.fp32_residual_connection
667
+ self.post_layer_norm = config.post_layer_norm
668
+
669
+ # Number of layers.
670
+ self.num_layers = config.num_layers
671
+
672
+ # Transformer layers.
673
+ def build_layer(layer_number):
674
+ return GLMBlock(config, layer_number, device=device)
675
+
676
+ self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
677
+
678
+ if self.post_layer_norm:
679
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
680
+ # Final layer norm before output.
681
+ self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
682
+ dtype=config.torch_dtype)
683
+
684
+ self.gradient_checkpointing = False
685
+
686
+ def _get_layer(self, layer_number):
687
+ return self.layers[layer_number]
688
+
689
+ def forward(
690
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
691
+ use_cache: Optional[bool] = True,
692
+ output_hidden_states: Optional[bool] = False,
693
+ ):
694
+ if not kv_caches:
695
+ kv_caches = [None for _ in range(self.num_layers)]
696
+ presents = () if use_cache else None
697
+ if self.gradient_checkpointing and self.training:
698
+ if use_cache:
699
+ logger.warning_once(
700
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
701
+ )
702
+ use_cache = False
703
+
704
+ all_self_attentions = None
705
+ all_hidden_states = () if output_hidden_states else None
706
+ for index in range(self.num_layers):
707
+ if output_hidden_states:
708
+ all_hidden_states = all_hidden_states + (hidden_states,)
709
+
710
+ layer = self._get_layer(index)
711
+ if self.gradient_checkpointing and self.training:
712
+ layer_ret = torch.utils.checkpoint.checkpoint(
713
+ layer,
714
+ hidden_states,
715
+ attention_mask,
716
+ rotary_pos_emb,
717
+ kv_caches[index],
718
+ use_cache,
719
+ use_reentrant=False
720
+ )
721
+ else:
722
+ layer_ret = layer(
723
+ hidden_states,
724
+ attention_mask,
725
+ rotary_pos_emb,
726
+ kv_cache=kv_caches[index],
727
+ use_cache=use_cache
728
+ )
729
+ hidden_states, kv_cache = layer_ret
730
+ if use_cache:
731
+ # token by token decoding, use tuple format
732
+ if kv_caches[0] is not None:
733
+ presents = presents + (kv_cache,)
734
+ # prefilling in decoding, use tensor format to save cuda memory
735
+ else:
736
+ if len(presents) == 0:
737
+ presents = kv_cache
738
+ else:
739
+ presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
740
+ if output_hidden_states:
741
+ all_hidden_states = all_hidden_states + (hidden_states,)
742
+
743
+ # Final layer norm.
744
+ if self.post_layer_norm:
745
+ hidden_states = self.final_layernorm(hidden_states)
746
+
747
+ return hidden_states, presents, all_hidden_states, all_self_attentions
748
+
749
+
750
+ class ChatGLMPreTrainedModel(PreTrainedModel):
751
+ """
752
+ An abstract class to handle weights initialization and
753
+ a simple interface for downloading and loading pretrained models.
754
+ """
755
+
756
+ is_parallelizable = False
757
+ supports_gradient_checkpointing = True
758
+ config_class = ChatGLMConfig
759
+ base_model_prefix = "transformer"
760
+ _no_split_modules = ["GLMBlock"]
761
+ _supports_flash_attn_2 = True
762
+ _supports_sdpa = True
763
+
764
+ def _init_weights(self, module: nn.Module):
765
+ """Initialize the weights."""
766
+ return
767
+
768
+ def get_masks(self, input_ids, past_key_values, padding_mask=None):
769
+ if self.config._attn_implementation == "flash_attention_2":
770
+ if padding_mask is not None and not padding_mask.all():
771
+ return padding_mask
772
+ return None
773
+ batch_size, seq_length = input_ids.shape
774
+ full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
775
+ full_attention_mask.tril_()
776
+ past_length = 0
777
+ if past_key_values:
778
+ past_length = past_key_values[0][0].shape[2]
779
+ if past_length:
780
+ full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
781
+ device=input_ids.device), full_attention_mask), dim=-1)
782
+ if padding_mask is not None:
783
+ full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
784
+ if not past_length and padding_mask is not None:
785
+ full_attention_mask -= padding_mask.unsqueeze(-1) - 1
786
+ full_attention_mask = (full_attention_mask < 0.5).bool()
787
+ full_attention_mask.unsqueeze_(1)
788
+ return full_attention_mask
789
+
790
+ def get_position_ids(self, input_ids, device):
791
+ batch_size, seq_length = input_ids.shape
792
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
793
+ return position_ids
794
+
795
+ class Embedding(torch.nn.Module):
796
+ """Language model embeddings."""
797
+
798
+ def __init__(self, config: ChatGLMConfig, device=None):
799
+ super(Embedding, self).__init__()
800
+
801
+ self.hidden_size = config.hidden_size
802
+ # Word embeddings (parallel).
803
+ self.word_embeddings = nn.Embedding(
804
+ config.padded_vocab_size,
805
+ self.hidden_size,
806
+ dtype=config.torch_dtype,
807
+ device=device
808
+ )
809
+ self.fp32_residual_connection = config.fp32_residual_connection
810
+
811
+ def forward(self, input_ids):
812
+ # Embeddings.
813
+ words_embeddings = self.word_embeddings(input_ids)
814
+ embeddings = words_embeddings
815
+ # If the input flag for fp32 residual connection is set, convert for float.
816
+ if self.fp32_residual_connection:
817
+ embeddings = embeddings.float()
818
+ return embeddings
819
+
820
+
821
+ class ChatGLMModel(ChatGLMPreTrainedModel):
822
+ def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
823
+ super().__init__(config)
824
+ if empty_init:
825
+ init_method = skip_init
826
+ else:
827
+ init_method = default_init
828
+ init_kwargs = {}
829
+ if device is not None:
830
+ init_kwargs["device"] = device
831
+ self.embedding = init_method(Embedding, config, **init_kwargs)
832
+ self.num_layers = config.num_layers
833
+ self.multi_query_group_num = config.multi_query_group_num
834
+ self.kv_channels = config.kv_channels
835
+
836
+ # Rotary positional embeddings
837
+ self.seq_length = config.seq_length
838
+ rotary_dim = (
839
+ config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
840
+ )
841
+
842
+ self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
843
+ original_impl=config.original_rope,
844
+ device=device, dtype=config.torch_dtype)
845
+ self.encoder = init_method(GLMTransformer, config, **init_kwargs)
846
+ self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
847
+ dtype=config.torch_dtype, **init_kwargs)
848
+
849
+ def get_input_embeddings(self):
850
+ return self.embedding.word_embeddings
851
+
852
+ def set_input_embeddings(self, value):
853
+ self.embedding.word_embeddings = value
854
+
855
+ def forward(
856
+ self,
857
+ input_ids,
858
+ position_ids: Optional[torch.Tensor] = None,
859
+ attention_mask: Optional[torch.BoolTensor] = None,
860
+ full_attention_mask: Optional[torch.BoolTensor] = None,
861
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
862
+ inputs_embeds: Optional[torch.Tensor] = None,
863
+ use_cache: Optional[bool] = None,
864
+ output_attentions: Optional[bool] = None,
865
+ output_hidden_states: Optional[bool] = None,
866
+ return_dict: Optional[bool] = None,
867
+ ):
868
+ output_hidden_states = (
869
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
870
+ )
871
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
872
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
873
+
874
+ batch_size, seq_length = input_ids.shape
875
+
876
+ if inputs_embeds is None:
877
+ inputs_embeds = self.embedding(input_ids)
878
+
879
+ if full_attention_mask is None:
880
+ if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
881
+ full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
882
+
883
+ # Rotary positional embeddings
884
+ rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
885
+ if position_ids is not None:
886
+ rotary_pos_emb = rotary_pos_emb[position_ids]
887
+ else:
888
+ rotary_pos_emb = rotary_pos_emb[None, :seq_length]
889
+
890
+ # Run encoder.
891
+ hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
892
+ inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
893
+ kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
894
+ )
895
+ if presents is not None and type(presents) is torch.Tensor:
896
+ presents = presents.split(1, dim=0)
897
+ presents = list(presents)
898
+ presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents]
899
+ presents = [tuple([x.squeeze(0) for x in y]) for y in presents]
900
+ presents = tuple(presents)
901
+
902
+ if not return_dict:
903
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
904
+
905
+ return BaseModelOutputWithPast(
906
+ last_hidden_state=hidden_states,
907
+ past_key_values=presents,
908
+ hidden_states=all_hidden_states,
909
+ attentions=all_self_attentions,
910
+ )
911
+
912
+
913
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
914
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
915
+ super().__init__(config)
916
+
917
+ self.max_sequence_length = config.max_length
918
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
919
+ self.config = config
920
+
921
+ def _update_model_kwargs_for_generation(
922
+ self,
923
+ outputs: ModelOutput,
924
+ model_kwargs: Dict[str, Any],
925
+ is_encoder_decoder: bool = False,
926
+ ) -> Dict[str, Any]:
927
+ # update past_key_values
928
+ cache_name, cache = self._extract_past_from_model_output(outputs)
929
+ model_kwargs[cache_name] = cache
930
+
931
+ # update attention mask
932
+ if "attention_mask" in model_kwargs:
933
+ attention_mask = model_kwargs["attention_mask"]
934
+ model_kwargs["attention_mask"] = torch.cat(
935
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
936
+ )
937
+
938
+ # update position ids
939
+ if "position_ids" in model_kwargs:
940
+ position_ids = model_kwargs["position_ids"]
941
+ new_position_id = position_ids[..., -1:].clone()
942
+ new_position_id += 1
943
+ model_kwargs["position_ids"] = torch.cat(
944
+ [position_ids, new_position_id], dim=-1
945
+ )
946
+
947
+ model_kwargs["is_first_forward"] = False
948
+ return model_kwargs
949
+
950
+ def prepare_inputs_for_generation(
951
+ self,
952
+ input_ids: torch.LongTensor,
953
+ past_key_values: Optional[torch.Tensor] = None,
954
+ attention_mask: Optional[torch.Tensor] = None,
955
+ position_ids: Optional[torch.Tensor] = None,
956
+ use_cache: Optional[bool] = None,
957
+ is_first_forward: bool = True,
958
+ **kwargs
959
+ ) -> dict:
960
+ # only last token for input_ids if past is not None
961
+ if position_ids is None:
962
+ position_ids = self.get_position_ids(input_ids, device=input_ids.device)
963
+ if not is_first_forward:
964
+ if past_key_values is not None:
965
+ position_ids = position_ids[..., -1:]
966
+ input_ids = input_ids[:, -1:]
967
+ return {
968
+ "input_ids": input_ids,
969
+ "past_key_values": past_key_values,
970
+ "position_ids": position_ids,
971
+ "attention_mask": attention_mask,
972
+ "return_last_logit": True,
973
+ "use_cache": use_cache
974
+ }
975
+
976
+ def forward(
977
+ self,
978
+ input_ids: Optional[torch.Tensor] = None,
979
+ position_ids: Optional[torch.Tensor] = None,
980
+ attention_mask: Optional[torch.Tensor] = None,
981
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
982
+ inputs_embeds: Optional[torch.Tensor] = None,
983
+ labels: Optional[torch.Tensor] = None,
984
+ use_cache: Optional[bool] = None,
985
+ output_attentions: Optional[bool] = None,
986
+ output_hidden_states: Optional[bool] = None,
987
+ return_dict: Optional[bool] = None,
988
+ return_last_logit: Optional[bool] = False,
989
+ ):
990
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
991
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
992
+
993
+ transformer_outputs = self.transformer(
994
+ input_ids=input_ids,
995
+ position_ids=position_ids,
996
+ attention_mask=attention_mask,
997
+ past_key_values=past_key_values,
998
+ inputs_embeds=inputs_embeds,
999
+ use_cache=use_cache,
1000
+ output_hidden_states=output_hidden_states,
1001
+ return_dict=return_dict,
1002
+ )
1003
+
1004
+ hidden_states = transformer_outputs[0]
1005
+ if return_last_logit:
1006
+ hidden_states = hidden_states[:, -1:]
1007
+ lm_logits = self.transformer.output_layer(hidden_states)
1008
+
1009
+ loss = None
1010
+ if labels is not None:
1011
+ lm_logits = lm_logits.to(torch.float32)
1012
+
1013
+ # Shift so that tokens < n predict n
1014
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1015
+ shift_labels = labels[..., 1:].contiguous()
1016
+ # Flatten the tokens
1017
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
1018
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1019
+
1020
+ lm_logits = lm_logits.to(hidden_states.dtype)
1021
+ loss = loss.to(hidden_states.dtype)
1022
+
1023
+ if not return_dict:
1024
+ output = (lm_logits,) + transformer_outputs[1:]
1025
+ return ((loss,) + output) if loss is not None else output
1026
+
1027
+ return CausalLMOutputWithPast(
1028
+ loss=loss,
1029
+ logits=lm_logits,
1030
+ past_key_values=transformer_outputs.past_key_values,
1031
+ hidden_states=transformer_outputs.hidden_states,
1032
+ attentions=transformer_outputs.attentions,
1033
+ )
1034
+
1035
+ @staticmethod
1036
+ def _reorder_cache(
1037
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
1038
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
1039
+ """
1040
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1041
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1042
+ beam_idx at every generation step.
1043
+
1044
+ Output shares the same memory storage as `past`.
1045
+ """
1046
+ return tuple(
1047
+ (
1048
+ layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)),
1049
+ layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)),
1050
+ )
1051
+ for layer_past in past
1052
+ )
1053
+
1054
+
1055
+ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
1056
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
1057
+ super().__init__(config)
1058
+
1059
+ self.num_labels = config.num_labels
1060
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
1061
+
1062
+ self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=config.torch_dtype)
1063
+ if config.classifier_dropout is not None:
1064
+ self.dropout = nn.Dropout(config.classifier_dropout)
1065
+ else:
1066
+ self.dropout = None
1067
+ self.config = config
1068
+
1069
+ def forward(
1070
+ self,
1071
+ input_ids: Optional[torch.LongTensor] = None,
1072
+ position_ids: Optional[torch.LongTensor] = None,
1073
+ attention_mask: Optional[torch.Tensor] = None,
1074
+ full_attention_mask: Optional[torch.Tensor] = None,
1075
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1076
+ inputs_embeds: Optional[torch.LongTensor] = None,
1077
+ labels: Optional[torch.LongTensor] = None,
1078
+ use_cache: Optional[bool] = None,
1079
+ output_attentions: Optional[bool] = None,
1080
+ output_hidden_states: Optional[bool] = None,
1081
+ return_dict: Optional[bool] = None,
1082
+ ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
1083
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1084
+
1085
+ transformer_outputs = self.transformer(
1086
+ input_ids=input_ids,
1087
+ position_ids=position_ids,
1088
+ attention_mask=attention_mask,
1089
+ full_attention_mask=full_attention_mask,
1090
+ past_key_values=past_key_values,
1091
+ inputs_embeds=inputs_embeds,
1092
+ use_cache=use_cache,
1093
+ output_attentions=output_attentions,
1094
+ output_hidden_states=output_hidden_states,
1095
+ return_dict=return_dict,
1096
+ )
1097
+
1098
+ hidden_states = transformer_outputs[0]
1099
+ pooled_hidden_states = hidden_states[:, -1]
1100
+ if self.dropout is not None:
1101
+ pooled_hidden_states = self.dropout(pooled_hidden_states)
1102
+ logits = self.classifier_head(pooled_hidden_states)
1103
+
1104
+ loss = None
1105
+ if labels is not None:
1106
+ if self.config.problem_type is None:
1107
+ if self.num_labels == 1:
1108
+ self.config.problem_type = "regression"
1109
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1110
+ self.config.problem_type = "single_label_classification"
1111
+ else:
1112
+ self.config.problem_type = "multi_label_classification"
1113
+
1114
+ if self.config.problem_type == "regression":
1115
+ loss_fct = MSELoss()
1116
+ if self.num_labels == 1:
1117
+ loss = loss_fct(logits.squeeze().float(), labels.squeeze())
1118
+ else:
1119
+ loss = loss_fct(logits.float(), labels)
1120
+ elif self.config.problem_type == "single_label_classification":
1121
+ loss_fct = CrossEntropyLoss()
1122
+ loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1))
1123
+ elif self.config.problem_type == "multi_label_classification":
1124
+ loss_fct = BCEWithLogitsLoss()
1125
+ loss = loss_fct(logits.float(), labels.view(-1, self.num_labels))
1126
+
1127
+ if not return_dict:
1128
+ output = (logits,) + transformer_outputs[1:]
1129
+ return ((loss,) + output) if loss is not None else output
1130
+
1131
+ return SequenceClassifierOutputWithPast(
1132
+ loss=loss,
1133
+ logits=logits,
1134
+ past_key_values=transformer_outputs.past_key_values,
1135
+ hidden_states=transformer_outputs.hidden_states,
1136
+ attentions=transformer_outputs.attentions,
1137
+ )
tokenization_chatglm.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ import base64
3
+ import os
4
+ import tiktoken
5
+ from typing import List, Optional, Union, Dict
6
+ from transformers import PreTrainedTokenizer
7
+ from transformers.utils import PaddingStrategy
8
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
9
+
10
+
11
+ class ChatGLM4Tokenizer(PreTrainedTokenizer):
12
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
13
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
14
+
15
+ def __init__(
16
+ self,
17
+ vocab_file,
18
+ clean_up_tokenization_spaces=False,
19
+ **kwargs
20
+ ):
21
+ self.name = "GLM4Tokenizer"
22
+ self.vocab_file = vocab_file
23
+ pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
24
+ self.pat_str = re.compile(pat_str)
25
+
26
+ mergeable_ranks = {}
27
+ with open(vocab_file) as f:
28
+ for line in f:
29
+ token, rank = line.strip().split()
30
+ rank = int(rank)
31
+ token = base64.b64decode(token)
32
+ mergeable_ranks[token] = rank
33
+
34
+ self.mergeable_ranks = mergeable_ranks
35
+
36
+ self.tokenizer = tiktoken.Encoding(
37
+ name="my_tokenizer",
38
+ pat_str=pat_str,
39
+ mergeable_ranks=mergeable_ranks,
40
+ special_tokens={}
41
+ )
42
+ self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
43
+ self.n_words = len(self.decoder)
44
+
45
+ super().__init__(
46
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
47
+ **kwargs
48
+ )
49
+
50
+ @property
51
+ def vocab_size(self):
52
+ return self.n_words
53
+
54
+ def get_vocab(self):
55
+ """ Returns vocab as a dict """
56
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
57
+ vocab.update(self.added_tokens_encoder)
58
+ return vocab
59
+
60
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str:
61
+ """
62
+ Converts a sequence of tokens in a single string.
63
+ """
64
+ text = ""
65
+ temp = b""
66
+ for t in tokens:
67
+ if isinstance(t, int):
68
+ t = chr(t)
69
+ if isinstance(t, str):
70
+ if temp:
71
+ text += temp.decode("utf-8", errors="replace")
72
+ elif isinstance(t, bytes):
73
+ temp += t
74
+ else:
75
+ raise TypeError("token should only be of type int, bytes or str")
76
+ if temp:
77
+ text += temp.decode("utf-8", errors="replace")
78
+ return text
79
+
80
+ def _tokenize(self, text, **kwargs):
81
+ tokens = []
82
+ ids = self.tokenizer.encode(text)
83
+ for t in ids:
84
+ tokens.append(self.decoder[t])
85
+ return tokens
86
+
87
+ def _convert_token_to_id(self, token):
88
+ """ Converts a token (str) in an id using the vocab. """
89
+ return self.mergeable_ranks[token]
90
+
91
+ def _convert_id_to_token(self, index):
92
+ """Converts an index (integer) in a token (str) using the vocab."""
93
+ return self.decoder.get(index, "")
94
+
95
+ def save_vocabulary(self, save_directory, filename_prefix=None):
96
+ """
97
+ Save the vocabulary and special tokens file to a directory.
98
+
99
+ Args:
100
+ save_directory (`str`):
101
+ The directory in which to save the vocabulary.
102
+ filename_prefix (`str`, *optional*):
103
+ An optional prefix to add to the named of the saved files.
104
+
105
+ Returns:
106
+ `Tuple(str)`: Paths to the files saved.
107
+ """
108
+ if os.path.isdir(save_directory):
109
+ vocab_file = os.path.join(
110
+ save_directory, self.vocab_files_names["vocab_file"]
111
+ )
112
+ else:
113
+ vocab_file = save_directory
114
+
115
+ with open(self.vocab_file, 'rb') as fin:
116
+ proto_str = fin.read()
117
+
118
+ with open(vocab_file, "wb") as writer:
119
+ writer.write(proto_str)
120
+
121
+ return (vocab_file,)
122
+
123
+ def get_prefix_tokens(self):
124
+ prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
125
+ return prefix_tokens
126
+
127
+ def build_single_message(self, role, metadata, message, tokenize=True):
128
+ assert role in ["system", "user", "assistant", "observation"], role
129
+ if tokenize:
130
+ role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
131
+ disallowed_special=())
132
+ message_tokens = self.tokenizer.encode(message, disallowed_special=())
133
+ tokens = role_tokens + message_tokens
134
+ return tokens
135
+ else:
136
+ return str(f"<|{role}|>{metadata}\n{message}")
137
+
138
+ def build_inputs_with_special_tokens(
139
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
140
+ ) -> List[int]:
141
+ """
142
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
143
+ adding special tokens. A BERT sequence has the following format:
144
+
145
+ - single sequence: `[CLS] X [SEP]`
146
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
147
+
148
+ Args:
149
+ token_ids_0 (`List[int]`):
150
+ List of IDs to which the special tokens will be added.
151
+ token_ids_1 (`List[int]`, *optional*):
152
+ Optional second list of IDs for sequence pairs.
153
+
154
+ Returns:
155
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
156
+ """
157
+ prefix_tokens = self.get_prefix_tokens()
158
+ token_ids_0 = prefix_tokens + token_ids_0
159
+ if token_ids_1 is not None:
160
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
161
+ return token_ids_0
162
+
163
+ def _pad(
164
+ self,
165
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
166
+ max_length: Optional[int] = None,
167
+ padding_side: str = "left",
168
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
169
+ pad_to_multiple_of: Optional[int] = None,
170
+ return_attention_mask: Optional[bool] = None,
171
+ ) -> dict:
172
+ """
173
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
174
+
175
+ Args:
176
+ encoded_inputs:
177
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
178
+ max_length: maximum length of the returned list and optionally padding length (see below).
179
+ Will truncate by taking into account the special tokens.
180
+ padding_strategy: PaddingStrategy to use for padding.
181
+
182
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
183
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
184
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
185
+ The tokenizer padding sides are defined in self.padding_side:
186
+
187
+ - 'left': pads on the left of the sequences
188
+ - 'right': pads on the right of the sequences
189
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
190
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
191
+ `>= 7.5` (Volta).
192
+ return_attention_mask:
193
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
194
+ """
195
+ # Load from model defaults
196
+
197
+ required_input = encoded_inputs[self.model_input_names[0]]
198
+ seq_length = len(required_input)
199
+
200
+ if padding_strategy == PaddingStrategy.LONGEST:
201
+ max_length = len(required_input)
202
+
203
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
204
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
205
+
206
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
207
+
208
+ # Initialize attention mask if not present.
209
+ if "attention_mask" not in encoded_inputs:
210
+ encoded_inputs["attention_mask"] = [1] * seq_length
211
+
212
+ if "position_ids" not in encoded_inputs:
213
+ encoded_inputs["position_ids"] = list(range(seq_length))
214
+
215
+ if needs_to_be_padded:
216
+ difference = max_length - len(required_input)
217
+
218
+ if "attention_mask" in encoded_inputs:
219
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
220
+ if "position_ids" in encoded_inputs:
221
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
222
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
223
+
224
+ return encoded_inputs
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a493598071550244b2ee7f26118f3edec2150b9dfa967929a99052ac83fe716
3
+ size 2623634
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff