File size: 2,822 Bytes
479cd53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from torch import optim
from tqdm.auto import tqdm
from helper import *
from model.generator import SkipEncoderDecoder, input_noise


def remove_watermark(image_path, mask_path, max_dim, reg_noise, input_depth, lr, show_step, training_steps, tqdm_length=100):
    DTYPE = torch.FloatTensor
    has_set_device = False
    if torch.cuda.is_available():
        device = 'cuda'
        has_set_device = True
        print("Setting Device to CUDA...")
    try:
        if torch.backends.mps.is_available():
            device = 'mps'
            has_set_device = True
            print("Setting Device to MPS...")
    except Exception as e:
        print(f"Your version of pytorch might be too old, which does not support MPS. Error: \n{e}")
        pass
    if not has_set_device:
        device = 'cpu'
        print('\nSetting device to "cpu", since torch is not built with "cuda" or "mps" support...')
        print('It is recommended to use GPU if possible...')

    image_np, mask_np = preprocess_images(image_path, mask_path, max_dim)

    print('Building the model...')
    generator = SkipEncoderDecoder(
        input_depth,
        num_channels_down = [128] * 5,
        num_channels_up = [128] * 5,
        num_channels_skip = [128] * 5
    ).type(DTYPE).to(device)

    objective = torch.nn.MSELoss().type(DTYPE).to(device)
    optimizer = optim.Adam(generator.parameters(), lr)

    image_var = np_to_torch_array(image_np).type(DTYPE).to(device)
    mask_var = np_to_torch_array(mask_np).type(DTYPE).to(device)

    generator_input = input_noise(input_depth, image_np.shape[1:]).type(DTYPE).to(device)

    generator_input_saved = generator_input.detach().clone()
    noise = generator_input.detach().clone()

    print('\nStarting training...\n')

    progress_bar = tqdm(range(training_steps), desc='Completed', ncols=tqdm_length)

    for step in progress_bar:
        optimizer.zero_grad()
        generator_input = generator_input_saved

        if reg_noise > 0:
            generator_input = generator_input_saved + (noise.normal_() * reg_noise)

        output = generator(generator_input)

        loss = objective(output * mask_var, image_var * mask_var)
        loss.backward()

        if step % show_step == 0:
            output_image = torch_to_np_array(output)
            visualize_sample(image_np, output_image, nrow = 2, size_factor = 10)

        progress_bar.set_postfix(Loss = loss.item())

        optimizer.step()

    output_image = torch_to_np_array(output)
    visualize_sample(output_image, nrow = 1, size_factor = 10)

    pil_image = Image.fromarray((output_image.transpose(1, 2, 0) * 255.0).astype('uint8'))

    output_path = image_path.split('/')[-1].split('.')[-2] + '-output.jpg'
    print(f'\nSaving final output image to: "{output_path}"\n')

    pil_image.save(output_path)