from torch import optim from tqdm.auto import tqdm from helper import * from model.generator import SkipEncoderDecoder, input_noise def remove_watermark(image_path, mask_path, max_dim, reg_noise, input_depth, lr, show_step, training_steps, tqdm_length=100): DTYPE = torch.FloatTensor has_set_device = False if torch.cuda.is_available(): device = 'cuda' has_set_device = True print("Setting Device to CUDA...") try: if torch.backends.mps.is_available(): device = 'mps' has_set_device = True print("Setting Device to MPS...") except Exception as e: print(f"Your version of pytorch might be too old, which does not support MPS. Error: \n{e}") pass if not has_set_device: device = 'cpu' print('\nSetting device to "cpu", since torch is not built with "cuda" or "mps" support...') print('It is recommended to use GPU if possible...') image_np, mask_np = preprocess_images(image_path, mask_path, max_dim) print('Building the model...') generator = SkipEncoderDecoder( input_depth, num_channels_down = [128] * 5, num_channels_up = [128] * 5, num_channels_skip = [128] * 5 ).type(DTYPE).to(device) objective = torch.nn.MSELoss().type(DTYPE).to(device) optimizer = optim.Adam(generator.parameters(), lr) image_var = np_to_torch_array(image_np).type(DTYPE).to(device) mask_var = np_to_torch_array(mask_np).type(DTYPE).to(device) generator_input = input_noise(input_depth, image_np.shape[1:]).type(DTYPE).to(device) generator_input_saved = generator_input.detach().clone() noise = generator_input.detach().clone() print('\nStarting training...\n') progress_bar = tqdm(range(training_steps), desc='Completed', ncols=tqdm_length) for step in progress_bar: optimizer.zero_grad() generator_input = generator_input_saved if reg_noise > 0: generator_input = generator_input_saved + (noise.normal_() * reg_noise) output = generator(generator_input) loss = objective(output * mask_var, image_var * mask_var) loss.backward() if step % show_step == 0: output_image = torch_to_np_array(output) visualize_sample(image_np, output_image, nrow = 2, size_factor = 10) progress_bar.set_postfix(Loss = loss.item()) optimizer.step() output_image = torch_to_np_array(output) visualize_sample(output_image, nrow = 1, size_factor = 10) pil_image = Image.fromarray((output_image.transpose(1, 2, 0) * 255.0).astype('uint8')) output_path = image_path.split('/')[-1].split('.')[-2] + '-output.jpg' print(f'\nSaving final output image to: "{output_path}"\n') pil_image.save(output_path)