[sdxl_arguments] cache_text_encoder_outputs = true no_half_vae = true min_timestep = 0 max_timestep = 1000 shuffle_caption = false [model_arguments] pretrained_model_name_or_path = "/workspace/pretrained_model/animagine-xl.safetensors" vae = "/workspace/vae/sdxl_vae.safetensors" [dataset_arguments] debug_dataset = false in_json = "/workspace/LoRA/meta_lat.json" train_data_dir = "/workspace/LoRA/train_data" dataset_repeats = 1 keep_tokens = 0 resolution = "1024,1024" color_aug = false token_warmup_min = 1 token_warmup_step = 0 [training_arguments] output_dir = "/workspace/LoRA/outputs" output_name = "jingliu_sdxl_lora" save_precision = "fp16" save_every_n_epochs = 4 train_batch_size = 1 max_token_length = 225 mem_eff_attn = false sdpa = true xformers = false max_train_epochs = 20 max_data_loader_n_workers = 8 persistent_data_loader_workers = true gradient_checkpointing = true gradient_accumulation_steps = 1 mixed_precision = "fp16" [logging_arguments] log_with = "wandb" log_tracker_name = "sdxl_lora" logging_dir = "/workspace/LoRA/logs" [sample_prompt_arguments] sample_every_n_epochs = 4 sample_sampler = "euler_a" [saving_arguments] save_model_as = "safetensors" [optimizer_arguments] optimizer_type = "AdaFactor" learning_rate = 4e-7 max_grad_norm = 1.0 optimizer_args = [ "scale_parameter=False", "relative_step=False", "warmup_init=False",] lr_scheduler = "constant_with_warmup" lr_warmup_steps = 100 [additional_network_arguments] no_metadata = false network_weights: network_weight, network_module = "networks.lora" network_dim = 64 network_alpha = 32 network_args = [] network_train_unet_only = true [advanced_training_config]