File size: 2,168 Bytes
17fc1f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: mit
---
This repo contains a low-rank adapter (LoRA) for BLOOM-7b1
fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca)
and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Portuguese.
### Dataset Creation
1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data).
2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023).
3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023).
<h3 align="center">
<img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center">
</h3>
### Training Parameters
The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora).
This version of the weights was trained with the following hyperparameters:
- Epochs: 8
- Batch size: 128
- Cutoff length: 1024
- Learning rate: 3e-4
- Lora _r_: 16
- Lora target modules: query_key_value
That is:
```
python finetune.py \
--base_model='bigscience/bloom-7b1' \
--num_epochs=5 \
--cutoff_len=1024 \
--group_by_length \
--output_dir='./bactrian-pt-bloom-7b1-lora' \
--lora_target_modules='query_key_value' \
--lora_r=16 \
--micro_batch_size=32
```
Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X.
### Discussion of Biases
(1) Translation bias; (2) Potential English-culture bias in the translated dataset.
### Citation Information
```
@misc{li2023bactrianx,
title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation},
author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin},
year={2023},
eprint={2305.15011},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|