File size: 3,881 Bytes
9ae1b1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# compute singular defect directions
import torch
import torch.nn.functional as F


def anomaly_dir_attn(
    blk,
    identity=False,
    bias=False,
    centered=False,
    homogeneous=False,
):
    with torch.no_grad():
        N = blk.ls1.gamma.shape[0]
        dev = blk.ls1.gamma.device

        A4 = torch.diag(blk.ls1.gamma)
        A3 = blk.attn.proj.weight
        B3 = blk.attn.proj.bias
        A2 = blk.attn.qkv.weight.chunk(3, dim=0)[-1]
        B2 = blk.attn.qkv.bias.chunk(3, dim=0)[-1]
        A1 = torch.diag(blk.norm1.weight)
        B1 = blk.norm1.bias
        A0 = (torch.eye(N) - 1 / N * torch.ones(N, N)).to(dev)
        A = A4 @ A3 @ A2 @ A1

        if centered:
            A = A @ A0
        B = A4 @ (A3 @ (A2 @ B1)) + A4 @ (A3 @ B2) + A4 @ B3

        if bias:
            A = torch.cat((A, B[:, None]), dim=1)
            if homogeneous:
                onehot = torch.cat(
                    (torch.zeros_like(B), torch.ones(1).to(dev))
                )
                A = torch.cat((A, onehot[None]), dim=0)

        if identity:
            iden = torch.eye(N).to(dev)
            A[:N, :N] += iden
        u, _, _ = torch.linalg.svd(A)

    return u[:N, 0], A, B


def w12(blk, x):
    with torch.no_grad():
        x1, x2 = blk.mlp.w12(x).chunk(2, dim=-1)
    return F.silu(x1) * x2


def anomaly_dir_mlp_ls(
    blk,
    identity=False,
    bias=False,
    centered=False,
    homogeneous=False,
    bias_ls=False,
):
    with torch.no_grad():
        N = blk.ls2.gamma.shape[0]
        M = blk.mlp.w3.weight.shape[1]
        dev = blk.ls2.gamma.device

        A4 = torch.diag(blk.ls2.gamma)
        A3 = blk.mlp.w3.weight
        B3 = blk.mlp.w3.bias

        X = torch.randn(100000, N, device=dev)
        Y = w12(blk, X)
        if bias_ls:
            X_one = torch.cat((X, torch.ones(100000, 1).to(dev)), dim=1)
        else:
            X_one = X
        sol = torch.linalg.lstsq(X_one, Y)
        if bias_ls:
            A2 = sol.solution.T[:, :-1]
            B2 = sol.solution.T[:, -1]
        else:
            A2 = sol.solution.T
            B2 = torch.zeros(M).to(dev)

        A1 = torch.diag(blk.norm2.weight)
        B1 = blk.norm2.bias
        A0 = (torch.eye(N) - 1 / N * torch.ones(N, N)).to(dev)
        A = A4 @ A3 @ A2 @ A1

        if centered:
            A = A @ A0
        B = A4 @ (A3 @ (A2 @ B1)) + A4 @ (A3 @ B2) + A4 @ B3

        if bias:
            A = torch.cat((A, B[:, None]), dim=1)
            if homogeneous:
                onehot = torch.cat(
                    (torch.zeros_like(B), torch.ones(1).to(dev))
                )
                A = torch.cat((A, onehot[None]), dim=0)

        if identity:
            iden = torch.eye(N).to(dev)
            A[:N, :N] += iden
        u, s, vt = torch.linalg.svd(A)

    return u[:N, 0], A, B


def anomaly_dir(blk, homogeneous=False):
    _, A, b = anomaly_dir_attn(
        blk,
        identity=True,
        bias=homogeneous,
        centered=True,
        homogeneous=homogeneous,
    )
    _, C, d = anomaly_dir_mlp_ls(
        blk,
        identity=True,
        bias=homogeneous,
        bias_ls=False,
        centered=True,
        homogeneous=homogeneous,
    )

    with torch.no_grad():
        N = b.shape[0]
        AA = C @ A
        if homogeneous:
            BB = 0
        else:
            BB = C @ b + d
        u, _, _ = torch.linalg.svd(AA)

    return u[:N, 0], AA, BB


def singular_defect_directions(model):
    accumulative_anomalies = []
    anomaly_dab = [anomaly_dir(blk) for blk in model.blocks]
    anomaly_as = [dab[1] for dab in anomaly_dab]

    with torch.no_grad():
        aaa = torch.eye(anomaly_as[0].shape[0]).to(anomaly_as[0])
        for a in anomaly_as:
            aaa = a @ aaa
            u, _, _ = torch.linalg.svd(aaa)
            accumulative_anomalies.append(u[:, 0])
    return accumulative_anomalies