|
from pathlib import Path |
|
|
|
import torch |
|
from PIL import Image |
|
from sklearn.decomposition import PCA |
|
|
|
import sinder |
|
from .singular_defect import singular_defect_directions |
|
|
|
|
|
def pca_array(tokens, whiten=False): |
|
h, w, c = tokens.shape |
|
tokens = tokens.detach().cpu() |
|
|
|
pca = PCA(n_components=3, whiten=whiten) |
|
pca.fit(tokens.reshape(-1, c)) |
|
projected_tokens = pca.transform(tokens.reshape(-1, c)) |
|
|
|
t = torch.tensor(projected_tokens) |
|
t_min = t.min(dim=0, keepdim=True).values |
|
t_max = t.max(dim=0, keepdim=True).values |
|
normalized_t = (t - t_min) / (t_max - t_min) |
|
|
|
array = (normalized_t * 255).byte().numpy() |
|
array = array.reshape(h, w, 3) |
|
|
|
return Image.fromarray(array).resize((w * 7, h * 7), 0) |
|
|
|
|
|
def get_tokens(model, image, blocks=1): |
|
model.eval() |
|
with torch.no_grad(): |
|
image_batch = image.unsqueeze(0).cuda() |
|
image_batch = image_batch.cuda() |
|
H = image_batch.shape[2] |
|
W = image_batch.shape[3] |
|
print(f'{W=} {H=}') |
|
tokens = model.get_intermediate_layers( |
|
image_batch, blocks, return_class_token=True, norm=False |
|
) |
|
tokens = [ |
|
( |
|
t.reshape( |
|
(H // model.patch_size, W // model.patch_size, t.size(-1)) |
|
), |
|
tc, |
|
) |
|
for t, tc in tokens |
|
] |
|
|
|
return tokens |
|
|
|
|
|
def load_model(model_name, checkpoint=None): |
|
print(f'using {model_name} model') |
|
model = torch.hub.load( |
|
repo_or_dir=Path(sinder.__file__).parent.parent, |
|
source='local', |
|
model=model_name, |
|
) |
|
if checkpoint is not None: |
|
states = torch.load(checkpoint, map_location='cpu') |
|
model.load_state_dict(states, strict=False) |
|
model = model.cuda() |
|
model.eval() |
|
model.interpolate_antialias = True |
|
model.singular_defects = singular_defect_directions(model) |
|
print(f'model loaded. patch size: {model.patch_size}') |
|
|
|
return model |
|
|