File size: 1,262 Bytes
fd32e03 9288a2f fd32e03 9288a2f fd32e03 9288a2f fd32e03 9288a2f fd32e03 9288a2f fd32e03 9288a2f fd32e03 9288a2f fd32e03 9288a2f fd32e03 9288a2f fd32e03 9288a2f fd32e03 9288a2f fd32e03 9288a2f fd32e03 9288a2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: mit
base_model: warp-ai/wuerstchen-prior
datasets:
- haorandai/Mammal_Mice_lr0.01_e0.1_20_with20constraints
tags:
- wuerstchen
- text-to-image
- diffusers
- diffusers-training
inference: true
---
# Finetuning - haorandai/temp
This pipeline was finetuned from **warp-ai/wuerstchen-prior** on the **haorandai/Mammal_Mice_lr0.01_e0.1_20_with20constraints** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['An image of a mice and a cat']:
![val_imgs_grid](./val_imgs_grid.png)
## Pipeline usage
You can use the pipeline like so:
```python
from diffusers import DiffusionPipeline
import torch
pipe_prior = DiffusionPipeline.from_pretrained("haorandai/temp", torch_dtype=torch.float16)
pipe_t2i = DiffusionPipeline.from_pretrained("warp-ai/wuerstchen", torch_dtype=torch.float16)
prompt = "An image of a mice and a cat"
(image_embeds,) = pipe_prior(prompt).to_tuple()
image = pipe_t2i(image_embeddings=image_embeds, prompt=prompt).images[0]
image.save("my_image.png")
```
## Training info
These are the key hyperparameters used during training:
* Epochs: 40
* Learning rate: 1e-05
* Batch size: 1
* Gradient accumulation steps: 4
* Image resolution: 512
* Mixed-precision: fp16
|