--- license: mit base_model: warp-ai/wuerstchen-prior datasets: - haorandai/Mammal_Mice_lr0.01_e0.1_20_with20constraints tags: - wuerstchen - text-to-image - diffusers - diffusers-training inference: true --- # Finetuning - haorandai/temp This pipeline was finetuned from **warp-ai/wuerstchen-prior** on the **haorandai/Mammal_Mice_lr0.01_e0.1_20_with20constraints** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['An image of a mice and a cat']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipe_prior = DiffusionPipeline.from_pretrained("haorandai/temp", torch_dtype=torch.float16) pipe_t2i = DiffusionPipeline.from_pretrained("warp-ai/wuerstchen", torch_dtype=torch.float16) prompt = "An image of a mice and a cat" (image_embeds,) = pipe_prior(prompt).to_tuple() image = pipe_t2i(image_embeddings=image_embeds, prompt=prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 40 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 4 * Image resolution: 512 * Mixed-precision: fp16