File size: 11,967 Bytes
2ef3e1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import faulthandler
faulthandler.enable()
import os
import random
import time
import signal
from multiprocessing import Process, Queue, Event
import numpy as np
from rkllm_binding import *
from rknnlite.api.rknn_lite import RKNNLite
import threading
import librosa
from transformers import WhisperFeatureExtractor
# 音频编码器进程
def audio_encoder_process(load_ready_queue, embedding_queue, audio_path_queue, start_event):
AUDIO_ENCODER_PATH = "audio_encoder.rknn"
# 初始化音频编码器
audio_encoder = RKNNLite(verbose=False)
model_size = os.path.getsize(AUDIO_ENCODER_PATH)
print(f"Start loading audio encoder model (size: {model_size / 1024 / 1024:.2f} MB)")
start_time = time.time()
audio_encoder.load_rknn(AUDIO_ENCODER_PATH)
end_time = time.time()
print(f"Audio encoder loaded in {end_time - start_time:.2f} seconds")
audio_encoder.init_runtime()
# 初始化Whisper特征提取器
feature_extractor = WhisperFeatureExtractor.from_pretrained(".")
# 通知主进程加载完成
load_ready_queue.put("audio_ready")
# 等待开始信号
start_event.wait()
def process_audio(audio_path, audio_encoder, feature_extractor):
try:
print("Start audio inference...")
audio, _ = librosa.load(audio_path, sr=feature_extractor.sampling_rate)
feature_extractor_output = feature_extractor(
audio,
sampling_rate=feature_extractor.sampling_rate,
return_attention_mask=True,
padding="max_length"
)
start_time = time.time()
audio_embeddings = audio_encoder.inference(inputs=[
feature_extractor_output.input_features.astype(np.float32),
feature_extractor_output.attention_mask.astype(np.float32)
], data_format="nhwc")[0].astype(np.float32)
end_time = time.time()
print(f"Audio encoder inference time: {end_time - start_time:.2f} seconds")
effective_length = feature_extractor_output.attention_mask.sum(-1)[0]
effective_length = (effective_length - 1) // 2 + 1
output_lengths = (effective_length - 2) // 2 + 1
audio_embeddings = audio_embeddings[:, :output_lengths]
print(audio_embeddings.shape)
return audio_embeddings
except Exception as e:
print(f"Error processing audio: {e}")
return None
while True:
audio_path = audio_path_queue.get()
if audio_path == "STOP":
break
embeddings = process_audio(audio_path, audio_encoder, feature_extractor)
if embeddings is not None:
embedding_queue.put(embeddings)
else:
embedding_queue.put("ERROR")
# LLM进程
def llm_process(load_ready_queue, embedding_queue, prompt_queue, inference_done_queue, start_event):
MODEL_PATH = "/home/firefly/qwen.rkllm"
handle = None
import locale
# 获取系统语言
system_lang = locale.getdefaultlocale()[0]
is_chinese = system_lang and system_lang.startswith('zh')
# is_chinese = False
# 添加进度提示信息列表
progress_messages_zh = [
"🚀 启动量子加速引擎...",
"🧠 神经网络正在苏醒...",
"🔄 并行宇宙计算进行中...",
"🌟 正在注入能量矩阵...",
"🔥 CPU已经到达工作温度,全力运转中...",
"🎯 特征向量正在跳跃式生长...",
"🎭 多头注意力机制开始营业...",
"💨 散热风扇已经进入超音速状态...",
"📚 语义解析器正在啃食数据...",
"🔍 上下文关联分析师正在加班...",
"🎨 视觉特征正在调色盘中混合...",
"🤝 跨模态对齐正在相亲相爱中...",
"⚡ 深度特征提取器已经深入地心...",
"🧪 神经网络正在炼丹中...",
"🎲 张量计算已经进入量子态...",
"📦 模型参数正在装箱搬运...",
"⚖️ 权重矩阵正在天平上找平衡...",
"🗺 语义向量正在绘制航海图...",
"🎭 注意力头们正在开会讨论...",
"🏗 残差模块正在搭建天梯...",
"🌈 激活函数正在调制彩虹...",
"🎮 张量核心正在玩魔方...",
"🎪 循环神经网络正在马戏团表演...",
"🎨 特征图正在画饼充饥...",
"🔮 模型正在占卜未来...",
"🎯 优化器正在进行火箭轨道计算...",
"🎪 批归一化正在杂技表演...",
"🎭 Dropout正在玩捉迷藏...",
"🌪 梯度正在形成龙卷风...",
"🎢 反向传播正在过山车..."
]
progress_messages_en = [
"Loading...",
"Extracting...",
"Image fusion in progress...",
"Matrix multiplication...",
"Chip heating up...",
"Feature vector calculation...",
"Attention mechanism processing...",
"Fan speed increasing...",
"Semantic parsing...",
"Context analysis...",
"Visual feature encoding...",
"Cross-modal alignment...",
"Deep feature extraction...",
"Neural network inference...",
"Tensor operations...",
"Loading model parameters...",
"Weight matrix calculation...",
"Semantic vector mapping...",
"Multi-head attention...",
"Residual connection..."
]
# 根据语言选择提示信息
progress_messages = progress_messages_zh if is_chinese else progress_messages_en
# 添加进度提示控制事件
progress_stop_event = threading.Event()
# 进度提示线程函数
def show_progress():
while not progress_stop_event.is_set():
for msg in progress_messages:
if progress_stop_event.is_set():
break
print(f"{msg}", flush=True)
time.sleep(random.uniform(0.1, 0.4))
def signal_handler(signal, frame):
print("Ctrl-C pressed, exiting...")
global handle
if handle:
abort(handle)
destroy(handle)
exit(0)
signal.signal(signal.SIGINT, signal_handler)
os.environ["RKLLM_LOG_LEVEL"] = "1"
inference_count = 0
inference_start_time = 0
def result_callback(result, userdata, state):
nonlocal inference_start_time, inference_count
if state == LLMCallState.RKLLM_RUN_NORMAL:
if inference_count == 0:
progress_stop_event.set() # 停止进度提示
first_token_time = time.time()
print("🎉 完成!")
print(f"\nTime to first token: {first_token_time - inference_start_time:.2f} seconds")
inference_count += 1
print(result.contents.text.decode(), end="", flush=True)
elif state == LLMCallState.RKLLM_RUN_FINISH:
print("\n\n(finished)")
inference_done_queue.put("DONE")
elif state == LLMCallState.RKLLM_RUN_ERROR:
print("\nError occurred during LLM call")
inference_done_queue.put("ERROR")
# 初始化LLM
param = create_default_param()
param.model_path = MODEL_PATH.encode()
param.img_start = "<|audio_bos|>".encode()
param.img_end = "<|audio_eos|>".encode()
param.img_content = "<|AUDIO|>".encode()
param.max_context_len = 768
param.max_new_tokens = 256
extend_param = RKLLMExtendParam()
extend_param.base_domain_id = 1
param.extend_param = extend_param
model_size = os.path.getsize(MODEL_PATH)
print(f"Start loading language model (size: {model_size / 1024 / 1024:.2f} MB)")
start_time = time.time()
handle = init(param, result_callback)
end_time = time.time()
print(f"Language model loaded in {end_time - start_time:.2f} seconds")
# 通知主进程加载完成
load_ready_queue.put("llm_ready")
# 创建推理参数
infer_param = RKLLMInferParam()
infer_param.mode = RKLLMInferMode.RKLLM_INFER_GENERATE.value
while True:
prompt = prompt_queue.get()
print(f"Received prompt: ===={prompt}\n====")
if prompt == "STOP":
break
# 重置计数器和事件
inference_count = 0
progress_stop_event.clear()
# 启动进度提示线程
progress_thread = threading.Thread(target=show_progress)
progress_thread.daemon = True
# progress_thread.start()
image_embeddings = embedding_queue.get()
if isinstance(image_embeddings, str) and image_embeddings == "ERROR":
print("Error processing audio")
continue
print(image_embeddings.shape)
rkllm_input = create_rkllm_input(RKLLMInputType.RKLLM_INPUT_MULTIMODAL,
prompt=prompt,
image_embed=image_embeddings)
print(f"Start LLM inference...")
inference_start_time = time.time()
run(handle, rkllm_input, infer_param, None)
# 清理
destroy(handle)
def main():
load_ready_queue = Queue()
embedding_queue = Queue()
audio_path_queue = Queue()
prompt_queue = Queue()
inference_done_queue = Queue()
start_event = Event()
audio_process = Process(target=audio_encoder_process,
args=(load_ready_queue, embedding_queue, audio_path_queue, start_event))
lm_process = Process(target=llm_process,
args=(load_ready_queue, embedding_queue, prompt_queue, inference_done_queue, start_event))
audio_process.start()
time.sleep(10)
lm_process.start()
# 等待模型加载
ready_count = 0
while ready_count < 2:
status = load_ready_queue.get()
print(f"Received ready signal: {status}")
ready_count += 1
print("All models loaded, starting interactive mode...")
start_event.set()
# 交互循环
try:
while True:
print("""
Enter your input (3 empty lines to start inference, Ctrl+C to exit, for example:
这是什么声音{{glass-breaking.wav}}?
What kind of sound is in {{./test.mp3}}?
Describe the audio in {{./test.mp3}}
这是什么动物的叫声{{./jntm.mp3}}?
):
""")
user_input = []
empty_lines = 0
while empty_lines < 3:
line = input()
if line.strip() == "":
empty_lines += 1
else:
empty_lines = 0
user_input.append(line)
# 解析输入
full_input = "\n".join(user_input[:-3]) # 去掉最后3个空行
import re
img_match = re.search(r'\{\{(.+?)\}\}', full_input)
if not img_match:
print("No image path found in input")
continue
img_path = img_match.group(1)
# 将音频标记替换为<image>标记, rkllm的<image>是写死的...
prompt = f"""<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Audio 1: <image>
{full_input.replace(img_match.group(0), '')}<|im_end|>
<|im_start|>assistant
"""
audio_path_queue.put(img_path)
prompt_queue.put(prompt)
# 等待推理完成
status = inference_done_queue.get()
if status == "ERROR":
print("Inference failed")
except KeyboardInterrupt:
print("\nExiting...")
audio_path_queue.put("STOP")
prompt_queue.put("STOP")
audio_process.join()
lm_process.join()
if __name__ == "__main__":
main()
#这是什么声音{{./test.mp3}}?
|