File size: 11,967 Bytes
2ef3e1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import faulthandler
faulthandler.enable()
import os
import random
import time
import signal
from multiprocessing import Process, Queue, Event
import numpy as np
from rkllm_binding import *
from rknnlite.api.rknn_lite import RKNNLite
import threading
import librosa
from transformers import WhisperFeatureExtractor

# 音频编码器进程
def audio_encoder_process(load_ready_queue, embedding_queue, audio_path_queue, start_event):
    
    AUDIO_ENCODER_PATH = "audio_encoder.rknn"
    
    # 初始化音频编码器
    audio_encoder = RKNNLite(verbose=False)
    model_size = os.path.getsize(AUDIO_ENCODER_PATH)
    print(f"Start loading audio encoder model (size: {model_size / 1024 / 1024:.2f} MB)")
    start_time = time.time()
    audio_encoder.load_rknn(AUDIO_ENCODER_PATH)
    end_time = time.time()
    print(f"Audio encoder loaded in {end_time - start_time:.2f} seconds")
    audio_encoder.init_runtime()
    
    # 初始化Whisper特征提取器
    feature_extractor = WhisperFeatureExtractor.from_pretrained(".")
    
    # 通知主进程加载完成
    load_ready_queue.put("audio_ready")
    
    # 等待开始信号
    start_event.wait()
    
    def process_audio(audio_path, audio_encoder, feature_extractor):
        try:
            print("Start audio inference...")
            audio, _ = librosa.load(audio_path, sr=feature_extractor.sampling_rate)
            feature_extractor_output = feature_extractor(
                audio,
                sampling_rate=feature_extractor.sampling_rate, 
                return_attention_mask=True,
                padding="max_length"
            )
            
            start_time = time.time()
            audio_embeddings = audio_encoder.inference(inputs=[
                feature_extractor_output.input_features.astype(np.float32),
                feature_extractor_output.attention_mask.astype(np.float32)
            ], data_format="nhwc")[0].astype(np.float32)
            end_time = time.time()
            print(f"Audio encoder inference time: {end_time - start_time:.2f} seconds")

            effective_length = feature_extractor_output.attention_mask.sum(-1)[0]
            effective_length = (effective_length - 1) // 2 + 1
            output_lengths = (effective_length - 2) // 2 + 1
            audio_embeddings = audio_embeddings[:, :output_lengths]
            print(audio_embeddings.shape)
            return audio_embeddings
        except Exception as e:
            print(f"Error processing audio: {e}")
            return None

    while True:
        audio_path = audio_path_queue.get()
        if audio_path == "STOP":
            break
        embeddings = process_audio(audio_path, audio_encoder, feature_extractor)
        if embeddings is not None:
            embedding_queue.put(embeddings)
        else:
            embedding_queue.put("ERROR")

# LLM进程
def llm_process(load_ready_queue, embedding_queue, prompt_queue, inference_done_queue, start_event):

    
    MODEL_PATH = "/home/firefly/qwen.rkllm"
    handle = None
    import locale
    
    # 获取系统语言
    system_lang = locale.getdefaultlocale()[0]
    is_chinese = system_lang and system_lang.startswith('zh')
    # is_chinese = False

    # 添加进度提示信息列表
    progress_messages_zh = [
        "🚀 启动量子加速引擎...",
        "🧠 神经网络正在苏醒...",
        "🔄 并行宇宙计算进行中...",
        "🌟 正在注入能量矩阵...",
        "🔥 CPU已经到达工作温度,全力运转中...",
        "🎯 特征向量正在跳跃式生长...",
        "🎭 多头注意力机制开始营业...",
        "💨 散热风扇已经进入超音速状态...",
        "📚 语义解析器正在啃食数据...",
        "🔍 上下文关联分析师正在加班...",
        "🎨 视觉特征正在调色盘中混合...",
        "🤝 跨模态对齐正在相亲相爱中...",
        "⚡ 深度特征提取器已经深入地心...",
        "🧪 神经网络正在炼丹中...",
        "🎲 张量计算已经进入量子态...",
        "📦 模型参数正在装箱搬运...",
        "⚖️ 权重矩阵正在天平上找平衡...",
        "🗺 语义向量正在绘制航海图...",
        "🎭 注意力头们正在开会讨论...",
        "🏗 残差模块正在搭建天梯...",
        "🌈 激活函数正在调制彩虹...",
        "🎮 张量核心正在玩魔方...",
        "🎪 循环神经网络正在马戏团表演...",
        "🎨 特征图正在画饼充饥...",
        "🔮 模型正在占卜未来...",
        "🎯 优化器正在进行火箭轨道计算...",
        "🎪 批归一化正在杂技表演...",
        "🎭 Dropout正在玩捉迷藏...",
        "🌪 梯度正在形成龙卷风...",
        "🎢 反向传播正在过山车..."
    ]
    
    progress_messages_en = [
        "Loading...",
        "Extracting...",
        "Image fusion in progress...",
        "Matrix multiplication...",
        "Chip heating up...",
        "Feature vector calculation...",
        "Attention mechanism processing...",
        "Fan speed increasing...",
        "Semantic parsing...",
        "Context analysis...",
        "Visual feature encoding...",
        "Cross-modal alignment...",
        "Deep feature extraction...",
        "Neural network inference...",
        "Tensor operations...",
        "Loading model parameters...",
        "Weight matrix calculation...",
        "Semantic vector mapping...",
        "Multi-head attention...",
        "Residual connection..."
    ]
    
    # 根据语言选择提示信息
    progress_messages = progress_messages_zh if is_chinese else progress_messages_en
    
    # 添加进度提示控制事件
    progress_stop_event = threading.Event()
    
    # 进度提示线程函数
    def show_progress():
        while not progress_stop_event.is_set():
            for msg in progress_messages:
                if progress_stop_event.is_set():
                    break
                print(f"{msg}", flush=True)
                time.sleep(random.uniform(0.1, 0.4))
    
    def signal_handler(signal, frame):
        print("Ctrl-C pressed, exiting...")
        global handle
        if handle:
            abort(handle)
            destroy(handle)
        exit(0)
    
    signal.signal(signal.SIGINT, signal_handler)
    os.environ["RKLLM_LOG_LEVEL"] = "1"
    
    inference_count = 0
    inference_start_time = 0
    def result_callback(result, userdata, state):
        nonlocal inference_start_time, inference_count
        if state == LLMCallState.RKLLM_RUN_NORMAL:
            if inference_count == 0:
                progress_stop_event.set()  # 停止进度提示
                first_token_time = time.time()
                print("🎉 完成!")
                print(f"\nTime to first token: {first_token_time - inference_start_time:.2f} seconds")
            inference_count += 1
            print(result.contents.text.decode(), end="", flush=True)
        elif state == LLMCallState.RKLLM_RUN_FINISH:
            print("\n\n(finished)")
            inference_done_queue.put("DONE")
        elif state == LLMCallState.RKLLM_RUN_ERROR:
            print("\nError occurred during LLM call")
            inference_done_queue.put("ERROR")
    
    # 初始化LLM
    param = create_default_param()
    param.model_path = MODEL_PATH.encode()
    param.img_start = "<|audio_bos|>".encode()
    param.img_end = "<|audio_eos|>".encode()
    param.img_content = "<|AUDIO|>".encode()
    param.max_context_len = 768
    param.max_new_tokens = 256
    extend_param = RKLLMExtendParam()
    extend_param.base_domain_id = 1
    param.extend_param = extend_param
    
    model_size = os.path.getsize(MODEL_PATH)
    print(f"Start loading language model (size: {model_size / 1024 / 1024:.2f} MB)")
    start_time = time.time()
    handle = init(param, result_callback)
    end_time = time.time()
    print(f"Language model loaded in {end_time - start_time:.2f} seconds")
    
    # 通知主进程加载完成
    load_ready_queue.put("llm_ready")
    
    # 创建推理参数
    infer_param = RKLLMInferParam()
    infer_param.mode = RKLLMInferMode.RKLLM_INFER_GENERATE.value
    
    while True:
        prompt = prompt_queue.get()
        print(f"Received prompt: ===={prompt}\n====")
        if prompt == "STOP":
            break

        # 重置计数器和事件
        inference_count = 0
        progress_stop_event.clear()
        
        # 启动进度提示线程
        progress_thread = threading.Thread(target=show_progress)
        progress_thread.daemon = True
        # progress_thread.start()
            
        image_embeddings = embedding_queue.get()
        if isinstance(image_embeddings, str) and image_embeddings == "ERROR":
            print("Error processing audio")
            continue
        print(image_embeddings.shape)
        rkllm_input = create_rkllm_input(RKLLMInputType.RKLLM_INPUT_MULTIMODAL,
                                        prompt=prompt,
                                        image_embed=image_embeddings)
        print(f"Start LLM inference...")
        inference_start_time = time.time()
        run(handle, rkllm_input, infer_param, None)
    
    # 清理
    destroy(handle)

def main():
    load_ready_queue = Queue()
    embedding_queue = Queue()
    audio_path_queue = Queue()
    prompt_queue = Queue()
    inference_done_queue = Queue()
    start_event = Event()
    
    audio_process = Process(target=audio_encoder_process,
                           args=(load_ready_queue, embedding_queue, audio_path_queue, start_event))
    lm_process = Process(target=llm_process,
                        args=(load_ready_queue, embedding_queue, prompt_queue, inference_done_queue, start_event))
    
    audio_process.start()
    time.sleep(10)
    lm_process.start()
    
    # 等待模型加载
    ready_count = 0
    while ready_count < 2:
        status = load_ready_queue.get()
        print(f"Received ready signal: {status}")
        ready_count += 1
    
    print("All models loaded, starting interactive mode...")
    start_event.set()
    
    # 交互循环
    try:
        while True:
            print("""
Enter your input (3 empty lines to start inference, Ctrl+C to exit, for example: 
这是什么声音{{glass-breaking.wav}}?
What kind of sound is in {{./test.mp3}}?
Describe the audio in {{./test.mp3}}
这是什么动物的叫声{{./jntm.mp3}}?
):
""")
            user_input = []
            empty_lines = 0
            
            while empty_lines < 3:
                line = input()
                if line.strip() == "":
                    empty_lines += 1
                else:
                    empty_lines = 0
                user_input.append(line)
            
            # 解析输入
            full_input = "\n".join(user_input[:-3])  # 去掉最后3个空行
            import re
            img_match = re.search(r'\{\{(.+?)\}\}', full_input)
            if not img_match:
                print("No image path found in input")
                continue
                
            img_path = img_match.group(1)
            # 将音频标记替换为<image>标记, rkllm的<image>是写死的...
            prompt = f"""<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Audio 1: <image>
{full_input.replace(img_match.group(0), '')}<|im_end|>
<|im_start|>assistant
"""
            audio_path_queue.put(img_path)
            prompt_queue.put(prompt)
            
            # 等待推理完成
            status = inference_done_queue.get()
            if status == "ERROR":
                print("Inference failed")
            
    except KeyboardInterrupt:
        print("\nExiting...")
        audio_path_queue.put("STOP")
        prompt_queue.put("STOP")
    
    audio_process.join()
    lm_process.join()

if __name__ == "__main__":
    main()

#这是什么声音{{./test.mp3}}?