|
|
|
import argparse |
|
import json |
|
import time |
|
|
|
import PIL |
|
from diffusers import StableDiffusionPipeline |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.schedulers import ( |
|
LCMScheduler |
|
) |
|
|
|
import logging |
|
|
|
logging.basicConfig() |
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.INFO) |
|
|
|
import numpy as np |
|
import os |
|
|
|
import torch |
|
from transformers import CLIPFeatureExtractor, CLIPTokenizer |
|
from typing import Callable, List, Optional, Union, Tuple |
|
from PIL import Image |
|
|
|
from rknnlite.api import RKNNLite |
|
|
|
class RKNN2Model: |
|
""" Wrapper for running RKNPU2 models """ |
|
|
|
def __init__(self, model_dir): |
|
logger.info(f"Loading {model_dir}") |
|
start = time.time() |
|
self.config = json.load(open(os.path.join(model_dir, "config.json"))) |
|
assert os.path.exists(model_dir) and os.path.exists(os.path.join(model_dir, "model.rknn")) |
|
self.rknnlite = RKNNLite() |
|
self.rknnlite.load_rknn(os.path.join(model_dir, "model.rknn")) |
|
self.rknnlite.init_runtime(core_mask=RKNNLite.NPU_CORE_AUTO) |
|
load_time = time.time() - start |
|
logger.info(f"Done. Took {load_time:.1f} seconds.") |
|
self.modelname = model_dir.split("/")[-1] |
|
self.inference_time = 0 |
|
|
|
def __call__(self, **kwargs) -> List[np.ndarray]: |
|
|
|
|
|
|
|
input_list = [value for key, value in kwargs.items()] |
|
for i, input in enumerate(input_list): |
|
if isinstance(input, np.ndarray): |
|
print(f"input {i} shape: {input.shape}") |
|
|
|
results = self.rknnlite.inference(inputs=input_list, data_format='nchw') |
|
for res in results: |
|
print(f"output shape: {res.shape}") |
|
return results |
|
|
|
class RKNN2LatentConsistencyPipeline(DiffusionPipeline): |
|
|
|
def __init__( |
|
self, |
|
text_encoder: RKNN2Model, |
|
unet: RKNN2Model, |
|
vae_decoder: RKNN2Model, |
|
scheduler: LCMScheduler, |
|
tokenizer: CLIPTokenizer, |
|
force_zeros_for_empty_prompt: Optional[bool] = True, |
|
feature_extractor: Optional[CLIPFeatureExtractor] = None, |
|
text_encoder_2: Optional[RKNN2Model] = None, |
|
tokenizer_2: Optional[CLIPTokenizer] = None |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
tokenizer=tokenizer, |
|
scheduler=scheduler, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.force_zeros_for_empty_prompt = force_zeros_for_empty_prompt |
|
self.safety_checker = None |
|
|
|
self.text_encoder = text_encoder |
|
self.text_encoder_2 = text_encoder_2 |
|
self.tokenizer_2 = tokenizer_2 |
|
self.unet = unet |
|
self.vae_decoder = vae_decoder |
|
|
|
VAE_DECODER_UPSAMPLE_FACTOR = 8 |
|
self.vae_scale_factor = VAE_DECODER_UPSAMPLE_FACTOR |
|
|
|
@staticmethod |
|
def postprocess( |
|
image: np.ndarray, |
|
output_type: str = "pil", |
|
do_denormalize: Optional[List[bool]] = None, |
|
): |
|
def numpy_to_pil(images: np.ndarray): |
|
""" |
|
Convert a numpy image or a batch of images to a PIL image. |
|
""" |
|
if images.ndim == 3: |
|
images = images[None, ...] |
|
images = (images * 255).round().astype("uint8") |
|
if images.shape[-1] == 1: |
|
|
|
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] |
|
else: |
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
return pil_images |
|
|
|
def denormalize(images: np.ndarray): |
|
""" |
|
Denormalize an image array to [0,1]. |
|
""" |
|
return np.clip(images / 2 + 0.5, 0, 1) |
|
|
|
if not isinstance(image, np.ndarray): |
|
raise ValueError( |
|
f"Input for postprocessing is in incorrect format: {type(image)}. We only support np array" |
|
) |
|
if output_type not in ["latent", "np", "pil"]: |
|
deprecation_message = ( |
|
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: " |
|
"`pil`, `np`, `pt`, `latent`" |
|
) |
|
logger.warning(deprecation_message) |
|
output_type = "np" |
|
|
|
if output_type == "latent": |
|
return image |
|
|
|
if do_denormalize is None: |
|
raise ValueError("do_denormalize is required for postprocessing") |
|
|
|
image = np.stack( |
|
[denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])], axis=0 |
|
) |
|
image = image.transpose((0, 2, 3, 1)) |
|
|
|
if output_type == "pil": |
|
image = numpy_to_pil(image) |
|
|
|
return image |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
num_images_per_prompt: int, |
|
do_classifier_free_guidance: bool, |
|
negative_prompt: Optional[Union[str, list]], |
|
prompt_embeds: Optional[np.ndarray] = None, |
|
negative_prompt_embeds: Optional[np.ndarray] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`Union[str, List[str]]`): |
|
prompt to be encoded |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`Optional[Union[str, list]]`): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
prompt_embeds (`Optional[np.ndarray]`, defaults to `None`): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`Optional[np.ndarray]`, defaults to `None`): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
""" |
|
if isinstance(prompt, str): |
|
batch_size = 1 |
|
elif isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="np", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids |
|
|
|
if not np.array_equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] |
|
|
|
prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] * batch_size |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="np", |
|
) |
|
negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] |
|
|
|
if do_classifier_free_guidance: |
|
negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) |
|
|
|
|
|
|
|
|
|
prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def check_inputs( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: Optional[int], |
|
width: Optional[int], |
|
callback_steps: int, |
|
negative_prompt: Optional[str] = None, |
|
prompt_embeds: Optional[np.ndarray] = None, |
|
negative_prompt_embeds: Optional[np.ndarray] = None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
if isinstance(generator, np.random.RandomState): |
|
latents = generator.randn(*shape).astype(dtype) |
|
elif isinstance(generator, torch.Generator): |
|
latents = torch.randn(*shape, generator=generator).numpy().astype(dtype) |
|
else: |
|
raise ValueError( |
|
f"Expected `generator` to be of type `np.random.RandomState` or `torch.Generator`, but got" |
|
f" {type(generator)}." |
|
) |
|
elif latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
|
|
|
|
latents = latents * np.float64(self.scheduler.init_noise_sigma) |
|
|
|
return latents |
|
|
|
|
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = "", |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 4, |
|
original_inference_steps: int = None, |
|
guidance_scale: float = 8.5, |
|
num_images_per_prompt: int = 1, |
|
generator: Optional[Union[np.random.RandomState, torch.Generator]] = None, |
|
latents: Optional[np.ndarray] = None, |
|
prompt_embeds: Optional[np.ndarray] = None, |
|
output_type: str = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, np.ndarray], None]] = None, |
|
callback_steps: int = 1, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`Optional[Union[str, List[str]]]`, defaults to None): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
height (`Optional[int]`, defaults to None): |
|
The height in pixels of the generated image. |
|
width (`Optional[int]`, defaults to None): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`Optional[Union[np.random.RandomState, torch.Generator]]`, defaults to `None`): |
|
A np.random.RandomState to make generation deterministic. |
|
latents (`Optional[np.ndarray]`, defaults to `None`): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`Optional[np.ndarray]`, defaults to `None`): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
output_type (`str`, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (Optional[Callable], defaults to `None`): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
guidance_rescale (`float`, defaults to 0.0): |
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of |
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). |
|
Guidance rescale factor should fix overexposure when using zero terminal SNR. |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
height = height or self.unet.config["sample_size"] * self.vae_scale_factor |
|
width = width or self.unet.config["sample_size"] * self.vae_scale_factor |
|
|
|
|
|
negative_prompt = None |
|
negative_prompt_embeds = None |
|
|
|
|
|
self.check_inputs( |
|
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds |
|
) |
|
|
|
|
|
if isinstance(prompt, str): |
|
batch_size = 1 |
|
elif isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if generator is None: |
|
generator = np.random.RandomState() |
|
|
|
start_time = time.time() |
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
num_images_per_prompt, |
|
False, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
encode_prompt_time = time.time() - start_time |
|
print(f"Prompt encoding time: {encode_prompt_time:.2f}s") |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, original_inference_steps=original_inference_steps) |
|
timesteps = self.scheduler.timesteps |
|
|
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
self.unet.config["in_channels"], |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
generator, |
|
latents, |
|
) |
|
|
|
bs = batch_size * num_images_per_prompt |
|
|
|
w = np.full(bs, guidance_scale - 1, dtype=prompt_embeds.dtype) |
|
w_embedding = self.get_guidance_scale_embedding( |
|
w, embedding_dim=self.unet.config["time_cond_proj_dim"], dtype=prompt_embeds.dtype |
|
) |
|
|
|
|
|
timestep_dtype = np.int64 |
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
inference_start = time.time() |
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
timestep = np.array([t], dtype=timestep_dtype) |
|
noise_pred = self.unet( |
|
sample=latents, |
|
timestep=timestep, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=w_embedding, |
|
)[0] |
|
|
|
|
|
latents, denoised = self.scheduler.step( |
|
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), return_dict=False |
|
) |
|
latents, denoised = latents.numpy(), denoised.numpy() |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
inference_time = time.time() - inference_start |
|
print(f"Inference time: {inference_time:.2f}s") |
|
|
|
decode_start = time.time() |
|
if output_type == "latent": |
|
image = denoised |
|
has_nsfw_concept = None |
|
else: |
|
denoised /= self.vae_decoder.config["scaling_factor"] |
|
|
|
image = np.concatenate( |
|
[self.vae_decoder(latent_sample=denoised[i : i + 1])[0] for i in range(denoised.shape[0])] |
|
) |
|
|
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
decode_time = time.time() - decode_start |
|
print(f"Decode time: {decode_time:.2f}s") |
|
|
|
total_time = encode_prompt_time + inference_time + decode_time |
|
print(f"Total time: {total_time:.2f}s") |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
|
|
|
|
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=None): |
|
""" |
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
Args: |
|
timesteps (`torch.Tensor`): |
|
generate embedding vectors at these timesteps |
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
dimension of the embeddings to generate |
|
dtype: |
|
data type of the generated embeddings |
|
|
|
Returns: |
|
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` |
|
""" |
|
w = w * 1000 |
|
half_dim = embedding_dim // 2 |
|
emb = np.log(10000.0) / (half_dim - 1) |
|
emb = np.exp(np.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w[:, None] * emb[None, :] |
|
emb = np.concatenate([np.sin(emb), np.cos(emb)], axis=1) |
|
|
|
if embedding_dim % 2 == 1: |
|
emb = np.pad(emb, [(0, 0), (0, 1)]) |
|
|
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
def get_image_path(args, **override_kwargs): |
|
""" mkdir output folder and encode metadata in the filename |
|
""" |
|
out_folder = os.path.join(args.o, "_".join(args.prompt.replace("/", "_").rsplit(" "))) |
|
os.makedirs(out_folder, exist_ok=True) |
|
|
|
out_fname = f"randomSeed_{override_kwargs.get('seed', None) or args.seed}" |
|
|
|
out_fname += f"_LCM_" |
|
out_fname += f"_numInferenceSteps{override_kwargs.get('num_inference_steps', None) or args.num_inference_steps}" |
|
|
|
return os.path.join(out_folder, out_fname + ".png") |
|
|
|
|
|
def prepare_controlnet_cond(image_path, height, width): |
|
image = Image.open(image_path).convert("RGB") |
|
image = image.resize((height, width), resample=Image.LANCZOS) |
|
image = np.array(image).transpose(2, 0, 1) / 255.0 |
|
return image |
|
|
|
|
|
def main(args): |
|
logger.info(f"Setting random seed to {args.seed}") |
|
|
|
|
|
scheduler_config_path = os.path.join(args.i, "scheduler/scheduler_config.json") |
|
with open(scheduler_config_path, "r") as f: |
|
scheduler_config = json.load(f) |
|
user_specified_scheduler = LCMScheduler.from_config(scheduler_config) |
|
|
|
print("user_specified_scheduler", user_specified_scheduler) |
|
|
|
pipe = RKNN2LatentConsistencyPipeline( |
|
text_encoder=RKNN2Model(os.path.join(args.i, "text_encoder")), |
|
unet=RKNN2Model(os.path.join(args.i, "unet")), |
|
vae_decoder=RKNN2Model(os.path.join(args.i, "vae_decoder")), |
|
scheduler=user_specified_scheduler, |
|
tokenizer=CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch16"), |
|
) |
|
|
|
logger.info("Beginning image generation.") |
|
image = pipe( |
|
prompt=args.prompt, |
|
height=int(args.size.split("x")[0]), |
|
width=int(args.size.split("x")[1]), |
|
num_inference_steps=args.num_inference_steps, |
|
guidance_scale=args.guidance_scale, |
|
generator=np.random.RandomState(args.seed), |
|
) |
|
|
|
out_path = get_image_path(args) |
|
logger.info(f"Saving generated image to {out_path}") |
|
image["images"][0].save(out_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--prompt", |
|
required=True, |
|
help="The text prompt to be used for text-to-image generation.") |
|
parser.add_argument( |
|
"-i", |
|
required=True, |
|
help=("Path to model directory")) |
|
parser.add_argument("-o", required=True) |
|
parser.add_argument("--seed", |
|
default=93, |
|
type=int, |
|
help="Random seed to be able to reproduce results") |
|
parser.add_argument( |
|
"-s", |
|
"--size", |
|
default="256x256", |
|
type=str, |
|
help="Image size") |
|
parser.add_argument( |
|
"--num-inference-steps", |
|
default=4, |
|
type=int, |
|
help="The number of iterations the unet model will be executed throughout the reverse diffusion process") |
|
parser.add_argument( |
|
"--guidance-scale", |
|
default=7.5, |
|
type=float, |
|
help="Controls the influence of the text prompt on sampling process (0=random images)") |
|
|
|
args = parser.parse_args() |
|
main(args) |