--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: TrimLesson3 results: [] --- # TrimLesson3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0961 - Accuracy: 0.7003 - F1-score: 0.6957 - Recall-score: 0.7003 - Precision-score: 0.7014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 20 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Recall-score | Precision-score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:------------:|:---------------:| | 4.0066 | 1.0 | 2068 | 3.5593 | 0.1583 | 0.0819 | 0.1583 | 0.0794 | | 2.5652 | 2.0 | 4136 | 2.2228 | 0.4437 | 0.3810 | 0.4437 | 0.4189 | | 1.9375 | 3.0 | 6204 | 1.5382 | 0.5597 | 0.5157 | 0.5597 | 0.5544 | | 2.1447 | 4.0 | 8272 | 1.3384 | 0.6030 | 0.5647 | 0.6030 | 0.5980 | | 2.1308 | 5.0 | 10340 | 1.2420 | 0.6216 | 0.5906 | 0.6216 | 0.6206 | | 1.7815 | 6.0 | 12408 | 1.1685 | 0.6384 | 0.6109 | 0.6384 | 0.6326 | | 1.1674 | 7.0 | 14476 | 1.1605 | 0.6431 | 0.6197 | 0.6431 | 0.6433 | | 1.5469 | 8.0 | 16544 | 1.1038 | 0.6674 | 0.6420 | 0.6674 | 0.6617 | | 0.6686 | 9.0 | 18612 | 1.0640 | 0.6708 | 0.6494 | 0.6708 | 0.6588 | | 1.2668 | 10.0 | 20680 | 1.1181 | 0.6669 | 0.6457 | 0.6669 | 0.6564 | | 0.5084 | 11.0 | 22748 | 1.0662 | 0.6773 | 0.6597 | 0.6773 | 0.6770 | | 1.7345 | 12.0 | 24816 | 1.0945 | 0.6783 | 0.6641 | 0.6783 | 0.6821 | | 0.7144 | 13.0 | 26884 | 1.0492 | 0.6857 | 0.6715 | 0.6857 | 0.6903 | | 0.712 | 14.0 | 28952 | 1.0526 | 0.6900 | 0.6791 | 0.6900 | 0.6940 | | 2.2976 | 15.0 | 31020 | 1.0654 | 0.6960 | 0.6847 | 0.6960 | 0.7023 | | 0.6391 | 16.0 | 33088 | 1.0770 | 0.6912 | 0.6817 | 0.6912 | 0.6929 | | 0.9704 | 17.0 | 35156 | 1.0885 | 0.6949 | 0.6895 | 0.6949 | 0.7022 | | 0.9055 | 18.0 | 37224 | 1.0743 | 0.6965 | 0.6916 | 0.6965 | 0.6987 | | 2.0981 | 19.0 | 39292 | 1.0877 | 0.7025 | 0.6977 | 0.7025 | 0.7051 | | 0.3026 | 20.0 | 41360 | 1.0961 | 0.7003 | 0.6957 | 0.7003 | 0.7014 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu118 - Datasets 2.20.0 - Tokenizers 0.20.0