Upload placement.py
Browse files- placement.py +72 -0
placement.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from flask import Flask, request, jsonify
|
3 |
+
|
4 |
+
from sklearn.compose import ColumnTransformer
|
5 |
+
from sklearn.ensemble import RandomForestClassifier
|
6 |
+
from sklearn.impute import SimpleImputer
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.pipeline import Pipeline
|
9 |
+
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
10 |
+
|
11 |
+
# Load the CSV data
|
12 |
+
data = pd.read_csv('dataset.csv')
|
13 |
+
|
14 |
+
# Split the data into features and labels
|
15 |
+
X = data.drop('PlacedOrNot', axis=1)
|
16 |
+
y = data['PlacedOrNot']
|
17 |
+
|
18 |
+
# Encode categorical features
|
19 |
+
categorical_features = ['HistoryOfBacklogs']
|
20 |
+
for feature in categorical_features:
|
21 |
+
encoder = LabelEncoder()
|
22 |
+
X[feature] = encoder.fit_transform(X[feature])
|
23 |
+
|
24 |
+
# Split the data into training and testing sets
|
25 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
26 |
+
|
27 |
+
# Create the pipeline
|
28 |
+
numerical_features = ['Internships', 'CGPA']
|
29 |
+
numerical_transformer = StandardScaler()
|
30 |
+
categorical_features = [ 'HistoryOfBacklogs']
|
31 |
+
categorical_transformer = SimpleImputer(strategy='most_frequent')
|
32 |
+
preprocessor = ColumnTransformer(
|
33 |
+
transformers=[
|
34 |
+
('num', numerical_transformer, numerical_features),
|
35 |
+
('cat', categorical_transformer, categorical_features)
|
36 |
+
])
|
37 |
+
|
38 |
+
pipeline = Pipeline([
|
39 |
+
('preprocessor', preprocessor),
|
40 |
+
('classifier', RandomForestClassifier(random_state=42))
|
41 |
+
])
|
42 |
+
|
43 |
+
# Train the model
|
44 |
+
pipeline.fit(X_train, y_train)
|
45 |
+
|
46 |
+
# Evaluate the model
|
47 |
+
accuracy = pipeline.score(X_test, y_test)
|
48 |
+
print('Accuracy:', accuracy)
|
49 |
+
|
50 |
+
|
51 |
+
# Create Flask app
|
52 |
+
app = Flask(__name__)
|
53 |
+
|
54 |
+
# Define API route for making predictions
|
55 |
+
@app.route('/predict', methods=['POST'])
|
56 |
+
def predict():
|
57 |
+
# Get input data from request
|
58 |
+
data = request.get_json()
|
59 |
+
|
60 |
+
# Convert input data to dataframe
|
61 |
+
input_data = pd.DataFrame(data, index=[0])
|
62 |
+
|
63 |
+
# Make predictions using the trained pipeline
|
64 |
+
predictions = pipeline.predict(input_data)
|
65 |
+
|
66 |
+
# Prepare response
|
67 |
+
response = {'prediction': predictions[0]}
|
68 |
+
return jsonify(response)
|
69 |
+
|
70 |
+
# Run the Flask app
|
71 |
+
if __name__ == '__main__':
|
72 |
+
app.run(debug=True)
|