{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d331765d0c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731946599750648258, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGat/ryuYaa6ck8sNTMKr66dAWI6stBUtAAAgD8AAIA/gCEMPTmPDD6QO7q9Etu7vgRJA7yumCS9AAAAAAAAAACAj1y9cfozu61JXzvNi6w8xtRxPI5wk70AAIA/AACAP02gWr2WmOA+HiEEPvSm3r4ur2g9nnAcPQAAAAAAAAAAmo/yvAulWj89MYq9m/Erv9aIjDtbo828AAAAAAAAAADAmMm97GcuP+aHkr0u/Rm/ZT8QvjN1zzwAAAAAAAAAAGagKrxk5dw+qIHvvXedAL8H7AG9CxbVvQAAAAAAAAAAzcD3vOv2uj9rVBe/QRjHPjhthTxzpHW7AAAAAAAAAAA97U6+yqKnP+y3A78pdSC/fya7vo6Gxr0AAAAAAAAAAADasr0/qxs/nxgPPUEKCr+KvCG99T9aPQAAAAAAAAAAmktOPMdIlz/Am1o9h1A4v8/AvzwjWwg9AAAAAAAAAACatYy7v8i6P5xFGLwTnbm+3loPvfr0Ab0AAAAAAAAAAFrmmj3/yWE+CciGvjRm7b4nf9u9x+K2vQAAAAAAAAAAWqz/vVP2mD/hRxG/Ed04v5PRPL7IbXq+AAAAAAAAAAAmLOO9vzzxPkYsvD0Sk+G+M9Gyvb5ltT0AAAAAAAAAADN0fz0uyrM/Ob8nP34UDb7derW7QP8QPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBpa3/givCMAWyUS7eMAXSUR0C8G8Sj1wo9dX2UKGgGR0By845MlC1JaAdLzGgIR0C8HCO2VmjCdX2UKGgGR0Bv1XC66J66aAdLx2gIR0C8HE6A4GUwdX2UKGgGR0By1RMmF8G+aAdLxWgIR0C8HE6Z+hGpdX2UKGgGR0BxwanhsImgaAdLvGgIR0C8HFbUTcqOdX2UKGgGR0BxnzcYZVGTaAdLt2gIR0C8HGawD/2kdX2UKGgGR0BwYR5Sm65HaAdLxmgIR0C8HGg0TDfndX2UKGgGR0BjsFpqREF4aAdN6ANoCEdAvByG9Jz1b3V9lChoBkdAcpHerMkhR2gHS79oCEdAvByUKArhBXV9lChoBkdAcHkDlo11n2gHS9xoCEdAvBycgRsdk3V9lChoBkdAc3ITRplBhWgHS9NoCEdAvByeTvAoHHV9lChoBkdAcuK9uxbB42gHS9RoCEdAvBykRRMviHV9lChoBkdAckG/7iyY5WgHS7JoCEdAvBzErI5o5HV9lChoBkdAcNdHcDbJwWgHS7VoCEdAvBzLch1TznV9lChoBkdAce717IDHO2gHS8BoCEdAvB0CPRzBAXV9lChoBkdAcPoxUNrj52gHS9FoCEdAvB0fdtVJc3V9lChoBkdAcb4VG0/nn2gHS89oCEdAvB0gC6pYLnV9lChoBkdAcPfZ8rqdH2gHS6RoCEdAvB1eFuejEnV9lChoBkdAb8Zw0fozN2gHS79oCEdAvB2O+h4+r3V9lChoBkdAcpsEtdzGP2gHS8toCEdAvB2uNFSbY3V9lChoBkdAcG5gqEvkBGgHS8NoCEdAvB2xrM1TBXV9lChoBkdAcfM53Tuv2WgHS7xoCEdAvB3HIBBAwHV9lChoBkdAcsSz6ab4J2gHS7JoCEdAvB3PaDf3vnV9lChoBkdAcvGMMI/qxGgHS/9oCEdAvB3g1xbSqnV9lChoBkdAb2kH6dlNDmgHS7toCEdAvB3m6d1+zHV9lChoBkdAcleN9ph4MWgHS+NoCEdAvB3shB7eEnV9lChoBkdAceQx9XtBwGgHS9BoCEdAvB4BQO4G2XV9lChoBkdAc5280UGmk2gHS9hoCEdAvB4GbTc7AHV9lChoBkdAb6TpGnXNDGgHS8VoCEdAvB4cjnmq53V9lChoBkdAchhR2bG3nmgHS6toCEdAvB48dfb9InV9lChoBkdAcheeizsyBWgHS+NoCEdAvCLkbMottnV9lChoBkdAcPV6OHWSU2gHS7JoCEdAvCLrjPv8ZXV9lChoBkdAcvWTtLL6lGgHS99oCEdAvCMgxFiKBXV9lChoBkdAcJSxNqQA/GgHS8ZoCEdAvCMtZdOZcHV9lChoBkdAc5Pf+S8rZ2gHS7loCEdAvCNA0j1PFnV9lChoBkdAb2Ks8PnSv2gHS8poCEdAvCNrCUHIIXV9lChoBkdAcG8Wom5UcWgHS8BoCEdAvCOFJ17pmnV9lChoBkdAc4OX9zfaYmgHS99oCEdAvCOdc5bQkXV9lChoBkdAcrqtTUAks2gHS+5oCEdAvCOsf3evZHV9lChoBkdAcZVcd5prUWgHS9BoCEdAvCOwgJTl1nV9lChoBkdAcjNVLBbfQGgHS81oCEdAvCOwVM23rnV9lChoBkdAc/fmCAc1fmgHS+loCEdAvCPBZIQOF3V9lChoBkdAcjEZtelbeWgHS7VoCEdAvCPWwqy4WnV9lChoBkdAcN2OSntOVWgHS9ZoCEdAvCPiDxsl9nV9lChoBkdAcsiShJyyU2gHS+VoCEdAvCPiItUXHnV9lChoBkdAc2Lc3EQ5FWgHS89oCEdAvCPyruIAO3V9lChoBkdAcjIYCQtBfWgHS6xoCEdAvCQGebutwXV9lChoBkdAcUigL7XQMWgHS7ZoCEdAvCQ0MCtA9nV9lChoBkdAEDUmUnogWGgHS2doCEdAvCQ7Pa+N+HV9lChoBkdAcndC66J66mgHS+JoCEdAvCRg6kqMFXV9lChoBkdAczkcgyM1j2gHS9hoCEdAvCTWbPQfIXV9lChoBkdAcDwKPGQ0XWgHS6loCEdAvCTavV3EAHV9lChoBkdAc14SHM2WIGgHS75oCEdAvCTyilBQenV9lChoBkdAcawv9LpRoGgHS9toCEdAvCT0yN4qw3V9lChoBkdAcc/ggX/HYGgHS71oCEdAvCT9lZowmHV9lChoBkdAcXCilzltCWgHS9RoCEdAvCT9tm+TNnV9lChoBkdAcMgIBBAv+WgHS7loCEdAvCUloDgZTHV9lChoBkdAck9I5o4+82gHS/JoCEdAvCVtD3M6inV9lChoBkdAci4EQ5FPSGgHTWUBaAhHQLwlhjABT4t1fZQoaAZHQHIyxo7FKkFoB00iAmgIR0C8JZpNbkfcdX2UKGgGR0BwJD4wh4dIaAdLy2gIR0C8JawCW/rTdX2UKGgGR0B0NV9tuUD/aAdNAAFoCEdAvCXOg3974XV9lChoBkdAbvUgM+eOGWgHS79oCEdAvCYNnBciW3V9lChoBkdAcZ+aScLBsWgHS7JoCEdAvCYcu9OARXV9lChoBkdAb/TYjB2wFGgHS8poCEdAvCYjWMCLdnV9lChoBkdAcQ7zGgi/wmgHS7xoCEdAvCYsbS7XhHV9lChoBkdAcsjmqHXVb2gHTb0BaAhHQLwmLbR4QjF1fZQoaAZHQHJ6tP557gNoB0vOaAhHQLwmPouf29N1fZQoaAZHQHL5otcv/R5oB0vaaAhHQLwmTneBQN11fZQoaAZHQHMu2/FirktoB0vNaAhHQLwmZZOBUaR1fZQoaAZHQHKo+JP69ChoB0u/aAhHQLwmiQNkOI91fZQoaAZHQHBc+tOmBOJoB0u/aAhHQLwmnbLEDQt1fZQoaAZHQHIPDohY/3ZoB0vLaAhHQLwmwH4Glhx1fZQoaAZHQHGytSqEOAloB0vJaAhHQLwmzc0Ltu11fZQoaAZHQG7FTXBguyxoB0u/aAhHQLwm4Adn0051fZQoaAZHQHDsfr8iwB5oB0u5aAhHQLwnEpCrtE51fZQoaAZHQHIlQyZa3ZxoB0u0aAhHQLwnHj2zv7Z1fZQoaAZHQHF2hKcurZJoB0vFaAhHQLwnMdAPd2x1fZQoaAZHQHNbIwM6RyRoB031AWgIR0C8JzRN/OMVdX2UKGgGR0By9d25hBqsaAdLw2gIR0C8Jz0hFEy+dX2UKGgGR0BzItbfP5YYaAdLzmgIR0C8J12ycCo1dX2UKGgGR0Bw/gNRWLgoaAdLxmgIR0C8J2GCdz4ldX2UKGgGR0BzXM+W4Vh1aAdL5WgIR0C8J2waBI4EdX2UKGgGR0BxiJ/OMVDbaAdLzGgIR0C8J4CamXPadX2UKGgGR0ByWZDpkf9xaAdLt2gIR0C8J4j37DVIdX2UKGgGR0Bw/Bgy/KyOaAdLymgIR0C8J7S/47A+dX2UKGgGR0Bwmy+rU9ZBaAdL4GgIR0C8J/lqBVdYdX2UKGgGR0BztmfywwCbaAdL12gIR0C8J/q1stTUdX2UKGgGR0Bp6FpsXSBtaAdN6ANoCEdAvCf9WtEG7nV9lChoBkdAcxNnqVyFPGgHS8xoCEdAvCf9cE/0NHV9lChoBkdAcGMD1oQFtGgHS65oCEdAvCgNjqfOEHV9lChoBkdAcBs7HyVfNWgHS8FoCEdAvCgbDIikf3V9lChoBkdAcJOoHs1KoWgHS7doCEdAvCgxsXSBsnV9lChoBkdAc44V94NZvGgHS9NoCEdAvChNvUBnz3V9lChoBkdAcviLg4wRG2gHS9loCEdAvChVsEaESXV9lChoBkdAca34i5d4V2gHS7FoCEdAvChY4VARkHV9lChoBkdAc12KKpDNQmgHTT8DaAhHQLwoZs/pt791fZQoaAZHQHMiwkcCHRFoB0vMaAhHQLwoa7muDBd1fZQoaAZHQHL+vXkHUttoB0vRaAhHQLwoc7fYSQJ1fZQoaAZHQHIfjR6Ww/xoB0u3aAhHQLwoeP2PDHh1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.975, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}