--- license: mit base_model: facebook/xlm-v-base tags: - generated_from_trainer datasets: - massive metrics: - accuracy - f1 model-index: - name: scenario-TCR-XLMV-1_data-AmazonScience_massive_all_1_1 results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: all_1.1 split: validation args: all_1.1 metrics: - name: Accuracy type: accuracy value: 0.8472984221877483 - name: F1 type: f1 value: 0.8225956665149763 --- # scenario-TCR-XLMV-1_data-AmazonScience_massive_all_1_1 This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.7886 - Accuracy: 0.8473 - F1: 0.8226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 47 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.587 | 0.27 | 5000 | 0.7148 | 0.8166 | 0.7696 | | 0.456 | 0.53 | 10000 | 0.6624 | 0.8415 | 0.8006 | | 0.3711 | 0.8 | 15000 | 0.6803 | 0.8394 | 0.8064 | | 0.2846 | 1.07 | 20000 | 0.7409 | 0.8406 | 0.8119 | | 0.2698 | 1.34 | 25000 | 0.7120 | 0.8428 | 0.8129 | | 0.2589 | 1.6 | 30000 | 0.7179 | 0.8478 | 0.8300 | | 0.246 | 1.87 | 35000 | 0.7383 | 0.8455 | 0.8119 | | 0.2079 | 2.14 | 40000 | 0.7911 | 0.8503 | 0.8162 | | 0.2157 | 2.41 | 45000 | 0.7775 | 0.8434 | 0.8251 | | 0.2111 | 2.67 | 50000 | 0.7737 | 0.8455 | 0.8196 | | 0.2014 | 2.94 | 55000 | 0.7886 | 0.8473 | 0.8226 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3