scenario-kd-pre-ner-half-xlmr_data-univner_full66
This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 119.4132
- Precision: 0.4396
- Recall: 0.4046
- F1: 0.4213
- Accuracy: 0.9482
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 66
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
284.1285 | 0.29 | 500 | 210.7202 | 0.0 | 0.0 | 0.0 | 0.9241 |
194.1198 | 0.58 | 1000 | 183.1519 | 0.1100 | 0.0170 | 0.0295 | 0.9252 |
175.8237 | 0.87 | 1500 | 169.5916 | 0.1989 | 0.0410 | 0.0680 | 0.9263 |
165.0206 | 1.16 | 2000 | 160.4465 | 0.215 | 0.0558 | 0.0886 | 0.9279 |
156.1986 | 1.46 | 2500 | 153.7663 | 0.2666 | 0.1428 | 0.1860 | 0.9325 |
151.2919 | 1.75 | 3000 | 148.4524 | 0.2818 | 0.1733 | 0.2146 | 0.9345 |
146.4505 | 2.04 | 3500 | 144.1935 | 0.2983 | 0.2017 | 0.2407 | 0.9355 |
142.0868 | 2.33 | 4000 | 141.0608 | 0.3472 | 0.1945 | 0.2493 | 0.9366 |
139.2831 | 2.62 | 4500 | 138.2455 | 0.3387 | 0.2598 | 0.2941 | 0.9388 |
136.7819 | 2.91 | 5000 | 135.6073 | 0.3525 | 0.2927 | 0.3199 | 0.9406 |
133.7896 | 3.2 | 5500 | 133.6945 | 0.3469 | 0.3021 | 0.3230 | 0.9410 |
132.221 | 3.49 | 6000 | 131.9122 | 0.3756 | 0.3238 | 0.3478 | 0.9420 |
130.4828 | 3.78 | 6500 | 130.4884 | 0.3579 | 0.3295 | 0.3431 | 0.9419 |
129.2979 | 4.08 | 7000 | 129.0718 | 0.3921 | 0.3178 | 0.3511 | 0.9430 |
127.4707 | 4.37 | 7500 | 127.8377 | 0.3954 | 0.3430 | 0.3673 | 0.9433 |
126.2401 | 4.66 | 8000 | 126.8584 | 0.3824 | 0.3525 | 0.3668 | 0.9438 |
125.6309 | 4.95 | 8500 | 125.8471 | 0.3999 | 0.3691 | 0.3839 | 0.9443 |
124.62 | 5.24 | 9000 | 125.0322 | 0.4002 | 0.3519 | 0.3745 | 0.9449 |
123.3763 | 5.53 | 9500 | 124.1776 | 0.4175 | 0.3584 | 0.3857 | 0.9451 |
122.3042 | 5.82 | 10000 | 123.5417 | 0.4107 | 0.3774 | 0.3934 | 0.9457 |
121.8611 | 6.11 | 10500 | 122.9038 | 0.4184 | 0.3797 | 0.3981 | 0.9461 |
121.1695 | 6.4 | 11000 | 122.4267 | 0.4213 | 0.3702 | 0.3941 | 0.9461 |
121.0527 | 6.69 | 11500 | 121.9642 | 0.4172 | 0.4087 | 0.4129 | 0.9469 |
120.1228 | 6.99 | 12000 | 121.4310 | 0.4241 | 0.3953 | 0.4092 | 0.9472 |
119.9357 | 7.28 | 12500 | 121.1448 | 0.4368 | 0.3764 | 0.4044 | 0.9469 |
119.0999 | 7.57 | 13000 | 120.7298 | 0.4295 | 0.3966 | 0.4124 | 0.9470 |
119.1017 | 7.86 | 13500 | 120.4837 | 0.4319 | 0.3909 | 0.4104 | 0.9475 |
118.622 | 8.15 | 14000 | 120.2208 | 0.4227 | 0.3907 | 0.4061 | 0.9473 |
118.3995 | 8.44 | 14500 | 119.9204 | 0.4237 | 0.3978 | 0.4103 | 0.9477 |
118.1158 | 8.73 | 15000 | 119.8377 | 0.4298 | 0.3956 | 0.4120 | 0.9475 |
117.752 | 9.02 | 15500 | 119.6274 | 0.4347 | 0.4151 | 0.4246 | 0.9482 |
117.8189 | 9.31 | 16000 | 119.5818 | 0.4377 | 0.3999 | 0.4180 | 0.9481 |
117.8235 | 9.61 | 16500 | 119.4980 | 0.4385 | 0.3962 | 0.4163 | 0.9481 |
117.6293 | 9.9 | 17000 | 119.4132 | 0.4396 | 0.4046 | 0.4213 | 0.9482 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 5
Model tree for haryoaw/scenario-kd-pre-ner-half-xlmr_data-univner_full66
Base model
FacebookAI/xlm-roberta-base