Edit model card

scenario-kd-pre-ner-half-xlmr_data-univner_full66

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 119.4132
  • Precision: 0.4396
  • Recall: 0.4046
  • F1: 0.4213
  • Accuracy: 0.9482

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 66
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
284.1285 0.29 500 210.7202 0.0 0.0 0.0 0.9241
194.1198 0.58 1000 183.1519 0.1100 0.0170 0.0295 0.9252
175.8237 0.87 1500 169.5916 0.1989 0.0410 0.0680 0.9263
165.0206 1.16 2000 160.4465 0.215 0.0558 0.0886 0.9279
156.1986 1.46 2500 153.7663 0.2666 0.1428 0.1860 0.9325
151.2919 1.75 3000 148.4524 0.2818 0.1733 0.2146 0.9345
146.4505 2.04 3500 144.1935 0.2983 0.2017 0.2407 0.9355
142.0868 2.33 4000 141.0608 0.3472 0.1945 0.2493 0.9366
139.2831 2.62 4500 138.2455 0.3387 0.2598 0.2941 0.9388
136.7819 2.91 5000 135.6073 0.3525 0.2927 0.3199 0.9406
133.7896 3.2 5500 133.6945 0.3469 0.3021 0.3230 0.9410
132.221 3.49 6000 131.9122 0.3756 0.3238 0.3478 0.9420
130.4828 3.78 6500 130.4884 0.3579 0.3295 0.3431 0.9419
129.2979 4.08 7000 129.0718 0.3921 0.3178 0.3511 0.9430
127.4707 4.37 7500 127.8377 0.3954 0.3430 0.3673 0.9433
126.2401 4.66 8000 126.8584 0.3824 0.3525 0.3668 0.9438
125.6309 4.95 8500 125.8471 0.3999 0.3691 0.3839 0.9443
124.62 5.24 9000 125.0322 0.4002 0.3519 0.3745 0.9449
123.3763 5.53 9500 124.1776 0.4175 0.3584 0.3857 0.9451
122.3042 5.82 10000 123.5417 0.4107 0.3774 0.3934 0.9457
121.8611 6.11 10500 122.9038 0.4184 0.3797 0.3981 0.9461
121.1695 6.4 11000 122.4267 0.4213 0.3702 0.3941 0.9461
121.0527 6.69 11500 121.9642 0.4172 0.4087 0.4129 0.9469
120.1228 6.99 12000 121.4310 0.4241 0.3953 0.4092 0.9472
119.9357 7.28 12500 121.1448 0.4368 0.3764 0.4044 0.9469
119.0999 7.57 13000 120.7298 0.4295 0.3966 0.4124 0.9470
119.1017 7.86 13500 120.4837 0.4319 0.3909 0.4104 0.9475
118.622 8.15 14000 120.2208 0.4227 0.3907 0.4061 0.9473
118.3995 8.44 14500 119.9204 0.4237 0.3978 0.4103 0.9477
118.1158 8.73 15000 119.8377 0.4298 0.3956 0.4120 0.9475
117.752 9.02 15500 119.6274 0.4347 0.4151 0.4246 0.9482
117.8189 9.31 16000 119.5818 0.4377 0.3999 0.4180 0.9481
117.8235 9.61 16500 119.4980 0.4385 0.3962 0.4163 0.9481
117.6293 9.9 17000 119.4132 0.4396 0.4046 0.4213 0.9482

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
5
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-kd-pre-ner-half-xlmr_data-univner_full66

Finetuned
(2622)
this model