--- base_model: haryoaw/scenario-TCR-NER_data-univner_full library_name: transformers license: mit metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: scenario-kd-scr-ner-half-xlmr_data-univner_full66 results: [] --- # scenario-kd-scr-ner-half-xlmr_data-univner_full66 This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset. It achieves the following results on the evaluation set: - Loss: 120.2460 - Precision: 0.4418 - Recall: 0.4111 - F1: 0.4259 - Accuracy: 0.9508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 66 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 257.7836 | 0.2911 | 500 | 190.0373 | 0.0 | 0.0 | 0.0 | 0.9241 | | 179.3866 | 0.5822 | 1000 | 173.8501 | 0.4324 | 0.0023 | 0.0046 | 0.9242 | | 167.4276 | 0.8732 | 1500 | 164.6176 | 0.4172 | 0.0196 | 0.0375 | 0.9249 | | 160.874 | 1.1643 | 2000 | 160.7553 | 0.4603 | 0.0042 | 0.0083 | 0.9243 | | 155.3677 | 1.4554 | 2500 | 154.5823 | 0.2516 | 0.0685 | 0.1077 | 0.9268 | | 151.6743 | 1.7465 | 3000 | 151.6693 | 0.3540 | 0.0594 | 0.1018 | 0.9267 | | 147.7351 | 2.0375 | 3500 | 147.3540 | 0.2816 | 0.0925 | 0.1392 | 0.9277 | | 144.2784 | 2.3286 | 4000 | 144.3419 | 0.2836 | 0.1122 | 0.1608 | 0.9285 | | 141.5455 | 2.6197 | 4500 | 141.6975 | 0.2921 | 0.1101 | 0.1599 | 0.9293 | | 139.1013 | 2.9108 | 5000 | 139.2388 | 0.2906 | 0.1260 | 0.1757 | 0.9311 | | 135.433 | 3.2019 | 5500 | 137.0034 | 0.2676 | 0.1945 | 0.2252 | 0.9334 | | 133.6936 | 3.4929 | 6000 | 135.0955 | 0.2873 | 0.1860 | 0.2258 | 0.9350 | | 131.3839 | 3.7840 | 6500 | 133.8098 | 0.2778 | 0.1666 | 0.2083 | 0.9350 | | 129.797 | 4.0751 | 7000 | 132.1772 | 0.2916 | 0.1961 | 0.2345 | 0.9369 | | 127.666 | 4.3662 | 7500 | 130.7785 | 0.3195 | 0.2108 | 0.2540 | 0.9380 | | 126.5971 | 4.6573 | 8000 | 129.6297 | 0.3243 | 0.2394 | 0.2754 | 0.9392 | | 125.6906 | 4.9483 | 8500 | 128.3762 | 0.3276 | 0.2613 | 0.2907 | 0.9403 | | 124.4524 | 5.2394 | 9000 | 127.9805 | 0.3305 | 0.2536 | 0.2870 | 0.9410 | | 122.7245 | 5.5305 | 9500 | 126.6189 | 0.3384 | 0.2789 | 0.3058 | 0.9418 | | 121.9463 | 5.8216 | 10000 | 125.9754 | 0.3504 | 0.2995 | 0.3230 | 0.9422 | | 120.7658 | 6.1126 | 10500 | 125.1251 | 0.3666 | 0.2923 | 0.3253 | 0.9438 | | 119.7118 | 6.4037 | 11000 | 124.2384 | 0.3649 | 0.3300 | 0.3466 | 0.9451 | | 119.2242 | 6.6948 | 11500 | 123.6015 | 0.3891 | 0.3443 | 0.3653 | 0.9456 | | 118.7415 | 6.9859 | 12000 | 123.2859 | 0.4014 | 0.3474 | 0.3725 | 0.9462 | | 117.3371 | 7.2770 | 12500 | 122.5413 | 0.4022 | 0.3730 | 0.3870 | 0.9480 | | 116.8112 | 7.5680 | 13000 | 122.0957 | 0.4210 | 0.3542 | 0.3847 | 0.9477 | | 116.6829 | 7.8591 | 13500 | 121.7368 | 0.4190 | 0.3939 | 0.4060 | 0.9491 | | 116.0694 | 8.1502 | 14000 | 121.2429 | 0.4264 | 0.4098 | 0.4179 | 0.9501 | | 115.1811 | 8.4413 | 14500 | 120.9883 | 0.4293 | 0.4087 | 0.4188 | 0.9497 | | 115.0686 | 8.7324 | 15000 | 120.9065 | 0.4307 | 0.3806 | 0.4041 | 0.9493 | | 114.9443 | 9.0234 | 15500 | 120.5293 | 0.4313 | 0.4005 | 0.4153 | 0.9499 | | 114.2954 | 9.3145 | 16000 | 120.3870 | 0.4287 | 0.4160 | 0.4222 | 0.9501 | | 114.2907 | 9.6056 | 16500 | 120.1462 | 0.4380 | 0.4135 | 0.4254 | 0.9511 | | 114.2952 | 9.8967 | 17000 | 120.2460 | 0.4418 | 0.4111 | 0.4259 | 0.9508 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1