--- base_model: haryoaw/scenario-TCR-NER_data-univner_en library_name: transformers license: mit metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: scenario-non-kd-po-ner-full-mdeberta_data-univner_en44 results: [] --- # scenario-non-kd-po-ner-full-mdeberta_data-univner_en44 This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_en](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1418 - Precision: 0.8347 - Recall: 0.8416 - F1: 0.8381 - Accuracy: 0.9853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 44 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0023 | 1.2755 | 500 | 0.1132 | 0.8279 | 0.8364 | 0.8321 | 0.9857 | | 0.0022 | 2.5510 | 1000 | 0.1035 | 0.8234 | 0.8540 | 0.8384 | 0.9858 | | 0.0021 | 3.8265 | 1500 | 0.0987 | 0.8228 | 0.8509 | 0.8366 | 0.9851 | | 0.0013 | 5.1020 | 2000 | 0.1237 | 0.7955 | 0.8458 | 0.8199 | 0.9839 | | 0.0008 | 6.3776 | 2500 | 0.1278 | 0.8173 | 0.8292 | 0.8232 | 0.9845 | | 0.0007 | 7.6531 | 3000 | 0.1257 | 0.8257 | 0.8437 | 0.8346 | 0.9848 | | 0.0006 | 8.9286 | 3500 | 0.1257 | 0.8466 | 0.8282 | 0.8373 | 0.9855 | | 0.0011 | 10.2041 | 4000 | 0.1250 | 0.8141 | 0.8251 | 0.8195 | 0.9843 | | 0.0007 | 11.4796 | 4500 | 0.1240 | 0.8206 | 0.8240 | 0.8223 | 0.9840 | | 0.0004 | 12.7551 | 5000 | 0.1297 | 0.8192 | 0.8395 | 0.8292 | 0.9847 | | 0.0008 | 14.0306 | 5500 | 0.1342 | 0.8270 | 0.8116 | 0.8192 | 0.9844 | | 0.0004 | 15.3061 | 6000 | 0.1295 | 0.8147 | 0.8240 | 0.8194 | 0.9843 | | 0.0004 | 16.5816 | 6500 | 0.1374 | 0.8118 | 0.8437 | 0.8274 | 0.9839 | | 0.0003 | 17.8571 | 7000 | 0.1416 | 0.8092 | 0.8209 | 0.8150 | 0.9837 | | 0.0003 | 19.1327 | 7500 | 0.1264 | 0.8249 | 0.8489 | 0.8367 | 0.9852 | | 0.0002 | 20.4082 | 8000 | 0.1323 | 0.8262 | 0.8416 | 0.8338 | 0.9854 | | 0.0003 | 21.6837 | 8500 | 0.1341 | 0.8239 | 0.8427 | 0.8332 | 0.9854 | | 0.0001 | 22.9592 | 9000 | 0.1400 | 0.8251 | 0.8499 | 0.8373 | 0.9852 | | 0.0002 | 24.2347 | 9500 | 0.1342 | 0.8219 | 0.8406 | 0.8311 | 0.9849 | | 0.0002 | 25.5102 | 10000 | 0.1355 | 0.8352 | 0.8447 | 0.8399 | 0.9855 | | 0.0001 | 26.7857 | 10500 | 0.1454 | 0.8254 | 0.8416 | 0.8334 | 0.9846 | | 0.0001 | 28.0612 | 11000 | 0.1448 | 0.8254 | 0.8416 | 0.8334 | 0.9849 | | 0.0001 | 29.3367 | 11500 | 0.1418 | 0.8347 | 0.8416 | 0.8381 | 0.9853 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1