has-abi commited on
Commit
fece874
1 Parent(s): 2d1df50

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ - accuracy
8
+ model-index:
9
+ - name: bert-finetuned-resumes-sections
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # bert-finetuned-resumes-sections
17
+
18
+ This model is a fine-tuned version of [dbmdz/bert-base-french-europeana-cased](https://huggingface.co/dbmdz/bert-base-french-europeana-cased) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0272
21
+ - F1: 0.9625
22
+ - Roc Auc: 0.9793
23
+ - Accuracy: 0.9612
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 2e-05
43
+ - train_batch_size: 8
44
+ - eval_batch_size: 8
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 10
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
54
+ | 0.1714 | 1.0 | 554 | 0.0653 | 0.9301 | 0.9515 | 0.9061 |
55
+ | 0.0554 | 2.0 | 1108 | 0.0392 | 0.9489 | 0.9679 | 0.9395 |
56
+ | 0.033 | 3.0 | 1662 | 0.0318 | 0.9564 | 0.9743 | 0.9512 |
57
+ | 0.0212 | 4.0 | 2216 | 0.0295 | 0.9574 | 0.9748 | 0.9530 |
58
+ | 0.0155 | 5.0 | 2770 | 0.0282 | 0.9587 | 0.9757 | 0.9548 |
59
+ | 0.0138 | 6.0 | 3324 | 0.0282 | 0.9615 | 0.9776 | 0.9584 |
60
+ | 0.0108 | 7.0 | 3878 | 0.0272 | 0.9625 | 0.9793 | 0.9612 |
61
+ | 0.0081 | 8.0 | 4432 | 0.0284 | 0.9597 | 0.9775 | 0.9584 |
62
+ | 0.0077 | 9.0 | 4986 | 0.0267 | 0.9602 | 0.9779 | 0.9584 |
63
+ | 0.0058 | 10.0 | 5540 | 0.0281 | 0.9579 | 0.9765 | 0.9566 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.19.2
69
+ - Pytorch 1.11.0+cu113
70
+ - Datasets 2.2.2
71
+ - Tokenizers 0.12.1