|
from flask import Flask, render_template, request, jsonify, session
|
|
import tensorflow as tf
|
|
from transformers import T5Tokenizer, TFT5ForConditionalGeneration
|
|
import joblib
|
|
import pandas as pd
|
|
import datetime
|
|
|
|
app = Flask(__name__)
|
|
app.secret_key = 'hassaanik'
|
|
|
|
|
|
|
|
counseling_greeting_model = TFT5ForConditionalGeneration.from_pretrained('./models/counseling_greeting_model/saved_model')
|
|
counseling_greeting_tokenizer = T5Tokenizer.from_pretrained('./models/counseling_greeting_model/tokenizer')
|
|
|
|
med_info_model = TFT5ForConditionalGeneration.from_pretrained('./models/medication_info_model/saved_model')
|
|
med_info_tokenizer = T5Tokenizer.from_pretrained('./models/medication_info_model/tokenizer')
|
|
|
|
knn_model = joblib.load('./models/medication_classification_model/knn_model.pkl')
|
|
label_encoders = joblib.load('./models/medication_classification_model/label_encoders.pkl')
|
|
age_scaler = joblib.load('./models/medication_classification_model/age_scaler.pkl')
|
|
medication_encoder = joblib.load('./models/medication_classification_model/medication_encoder.pkl')
|
|
|
|
|
|
|
|
|
|
@app.route('/')
|
|
def index():
|
|
session.clear()
|
|
return render_template('index.html')
|
|
|
|
@app.route('/reset_chat', methods=['POST'])
|
|
def reset_chat():
|
|
session.clear()
|
|
return jsonify({'status': 'Chat reset'})
|
|
|
|
def generate_response(model, tokenizer, input_text, session_key):
|
|
|
|
encoding = tokenizer(input_text, max_length=500, padding='max_length', truncation=True, return_tensors='tf')
|
|
input_ids = encoding['input_ids']
|
|
attention_mask = encoding['attention_mask']
|
|
|
|
outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=512, num_beams=5, early_stopping=True)
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
if session_key not in session:
|
|
session[session_key] = []
|
|
session[session_key].append({'user': input_text, 'bot': response})
|
|
return response
|
|
|
|
@app.route('/counseling_greeting', methods=['POST'])
|
|
def counseling_greeting():
|
|
data = request.get_json()
|
|
prompt = data['prompt']
|
|
response = generate_response(counseling_greeting_model, counseling_greeting_tokenizer, f"question: {prompt}", 'counseling_greeting')
|
|
return jsonify({'response': response, 'conversation': session['counseling_greeting']})
|
|
|
|
@app.route('/medication_info', methods=['POST'])
|
|
def medication_info():
|
|
data = request.get_json()
|
|
question = data['question']
|
|
response = generate_response(med_info_model, med_info_tokenizer, f"question: {question}", 'medication_info')
|
|
return jsonify({'response': response, 'conversation': session['medication_info']})
|
|
|
|
@app.route('/classify_medication', methods=['POST'])
|
|
def classify_medication():
|
|
data = pd.DataFrame([request.get_json()])
|
|
for column in ['Gender', 'Blood Type', 'Medical Condition', 'Test Results']:
|
|
data[column] = label_encoders[column].transform(data[column])
|
|
data['Age'] = age_scaler.transform(data[['Age']])
|
|
predictions = knn_model.predict(data)
|
|
predicted_medications = medication_encoder.inverse_transform(predictions)
|
|
if 'classify_medication' not in session:
|
|
session['classify_medication'] = []
|
|
session['classify_medication'].append({'user': data.to_dict(), 'bot': predicted_medications[0]})
|
|
return jsonify({'medication': predicted_medications[0], 'conversation': session['classify_medication']})
|
|
|
|
|
|
if __name__ == '__main__':
|
|
app.run(debug=True)
|
|
|