|
import tensorflow as tf |
|
from data_splitting import num_classes, input_size |
|
|
|
|
|
model = tf.keras.models.Sequential([ |
|
tf.keras.layers.Dense(100, activation='relu', kernel_initializer='he_normal', kernel_regularizer=tf.keras.regularizers.l2(0.01), input_shape=(input_size,)), |
|
tf.keras.layers.BatchNormalization(), |
|
tf.keras.layers.Dense(80, activation='relu', kernel_initializer='he_normal', kernel_regularizer=tf.keras.regularizers.l2(0.01)), |
|
tf.keras.layers.BatchNormalization(), |
|
tf.keras.layers.Dense(50, activation='relu', kernel_initializer='he_normal', kernel_regularizer=tf.keras.regularizers.l2(0.01)), |
|
tf.keras.layers.BatchNormalization(), |
|
tf.keras.layers.Dense(num_classes, activation='softmax') |
|
]) |
|
|