File size: 1,533 Bytes
4001ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from happytransformer import HappyTextToText, TTSettings
import difflib
import torch

grammar_model = HappyTextToText("T5", "vennify/t5-base-grammar-correction")
beam_settings = TTSettings(num_beams=5, min_length=1, max_length=20)

class GrammarChecker:
    def __init__(self):
        self.grammar_check = grammar_model

    def correct_grammar(self, text):
        # Generate corrected text from the grammar model
        matches = self.grammar_check.generate_text(text, args=beam_settings)

        # Extract original and corrected text
        original_text = text
        corrected_text = matches.text if matches and matches.text else text

        # Calculate the differences between original and corrected text
        differences = list(difflib.ndiff(original_text.split(), corrected_text.split()))

        # Extract corrected words
        corrected_words = [word[2:] for word in differences if word.startswith('+ ')]

        # Calculate the total count of found mistakes
        foundmistakes_count = len(corrected_words)

        return print(f"Corrected: {corrected_text}\nWords Corrected: {corrected_words}\nCount:{foundmistakes_count}")

    # def save_model(self, path):
    #     # Save the model using torch.save
    #     torch.save(self.grammar_check.model, path)

if __name__ == "__main__":
    obj = GrammarChecker()
    message = "they is going to spent time together."
    # corrected_text, corrected_words, count = obj.correct_grammar(message)
    obj.correct_grammar(message)

grammar_model.save("F:\\nlp")