File size: 3,423 Bytes
ceedef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

import transformers
import datasets
from transformers import PreTrainedTokenizerFast
from transformers import (
    GPT2TokenizerFast,
    AutoConfig,
    AutoModelForCausalLM,
    Trainer,
    TrainingArguments,
    default_data_collator
)
from transformers.trainer_utils import get_last_checkpoint
import torch
#from transformers.utils.dummy_tokenizers_objects import PreTrainedTokenizerFast

#config_name = "C:\\Users\\vin\\Documents\\Projects\\NLP\\kielimalli\\config.json"
#tokenizer_file = "C:\\Users\\vin\\Documents\\Projects\\NLP\\models\\tokens.json"
#input_dir = "H:\\Data_temp\\tokenized_dataset"
#output_dir = "H:\\Data_temp\\checkpoints\\model1"

def main():
    import os
    #enable if required by your environment
    #os.environ["CUDA_VISIBLE_DEVICES"] = "0"
    #torch.backends.cuda.matmul.allow_tf32 = True
    #torch.backends.cudnn.allow_tf32 = True
    
    config_name = "config_large_bpe.json"
    tokenizer_files = "/path/to/tokenizer/files"
    input_dir = "/data/dir"
    output_dir = "/out/dir"

    training_args = TrainingArguments(
        output_dir=output_dir,
        per_device_train_batch_size=4,
        per_device_eval_batch_size=4,
        learning_rate=2.067e-5,
        lr_scheduler_type="linear",
        adam_beta1=0.95,
        adam_beta2=0.985,
        adam_epsilon=1e-8,
        weight_decay=0.001,
        gradient_accumulation_steps=32,
        num_train_epochs=6.7,
        save_total_limit=2,
        dataloader_num_workers=10,
        save_steps=100,
        warmup_steps=1000,
        do_eval=True,
        eval_steps=1000,
        evaluation_strategy="steps",
        logging_strategy="steps",
        logging_steps=100,
        bf16=True,
        tf32=True,
        fp16_opt_level="O2",
        half_precision_backend="amp",
        bf16_full_eval=True
    )

    print("setting up tokenizer...")
    tokenizer = GPT2TokenizerFast.from_pretrained(tokenizer_files)
    #tokenizer.add_special_tokens({'pad_token': '[PAD]'})#Probably wrong
    tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token})
    from tokenizers.processors import TemplateProcessing
    tokenizer._tokenizer.post_processor = TemplateProcessing(
        single="$0 "+tokenizer.eos_token,
        pair="$A "+tokenizer.eos_token+" $B:1 "+tokenizer.eos_token,
        special_tokens=[(tokenizer.eos_token, 0)],
    )

    print("loading model...")
    config = AutoConfig.from_pretrained(config_name)
    model = AutoModelForCausalLM.from_config(config)
    #model = AutoModelForCausalLM.from_pretrained("/checkpoint/dir") if restarting training completely and loading weights from a checkpoints
    model.gradient_checkpointing_enable() #Optional, affects performance
    print("loading data...")
    dataset = datasets.load_from_disk(input_dir)

    print("starting training...")
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=dataset["train"],
        data_collator=default_data_collator,
        eval_dataset=dataset["test"].select(range(10000)), #To save time do not evaluate on whole test set during training
        tokenizer=tokenizer
    )

    #checkpoint = None
    checkpoint = get_last_checkpoint(output_dir)
    print("checkpoint:", checkpoint)
    trainer.train(resume_from_checkpoint=checkpoint)

if __name__ == "__main__":
    main()