|
|
|
|
|
import os |
|
import sys |
|
from datasets import load_dataset, concatenate_datasets |
|
from transformers import PreTrainedTokenizerFast |
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
Trainer, |
|
TrainingArguments, |
|
default_data_collator, |
|
GPT2Tokenizer |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint |
|
from transformers import AutoModelWithLMHead, AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification, AutoModel |
|
|
|
from transformers import GPT2Model |
|
from transformers import GPT2TokenizerFast |
|
import transformers |
|
import torch |
|
import numpy as np |
|
import argparse |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("/checkpoint/loc") |
|
tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token}) |
|
out_dir = "/out_dir/xed" |
|
max_length = 1024 |
|
|
|
|
|
fi_annotated_raw = load_dataset("xed_en_fi","fi_annotated") |
|
fi_neutral_raw = load_dataset("xed_en_fi","fi_neutral") |
|
|
|
def to_arr(examples): |
|
labels = [] |
|
for item in examples["labels"]: |
|
labels.append([item]) |
|
return {"sentence":examples["sentence"],"labels":labels} |
|
fi_neutral_mapped = fi_neutral_raw["train"].map(to_arr, batched=True) |
|
|
|
fi_neutral_mapped_cast = fi_neutral_mapped.cast(fi_annotated_raw["train"].features) |
|
concat_raw_set = concatenate_datasets([fi_neutral_mapped_cast, fi_annotated_raw["train"]]) |
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples["sentence"], padding="max_length", truncation=True, max_length=max_length) |
|
|
|
def to_arr_2(examples): |
|
labels = [] |
|
for item in examples["labels"]: |
|
label = np.zeros(9) |
|
label[item] = 1 |
|
labels.append(label.tolist()) |
|
return {"sentence":examples["sentence"],"labels":labels} |
|
|
|
tokenized_datasets = concat_raw_set.map(tokenize_function, batched=True).map(to_arr_2, batched=True).shuffle(seed=42).train_test_split(test_size=0.1) |
|
tokenized_datasets.save_to_disk(out_dir) |