File size: 20,360 Bytes
47671ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
---
base_model: abdoelsayed/AraDPR
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5000000
- loss:MarginMSELoss
widget:
- source_sentence: من هو زوج صوفيا فيرغارا
  sentences:
  - 'عرض كل الصور ( 52 ) صوفيا فيرجارا متزوجة حاليا من جو مانجانييلو . لقد كانت في
    تسع علاقات مع المشاهير بمتوسط حوالي 3 . 1 سنوات لكل منها . كان متوسط زواجها 2
    . 2 سنة لكل منهما . الاسم المعطى : صوفيا مارجريتا فيرجارا .'
  - ما الذي ترمز إليه السلطة الفلسطينية في Lawyer Name PA ؟ وباستخدام هذه الطريقة
    ، فإن PA تعني النقابة المهنية . السلطة الفلسطينية هي شركة مكونة من محترفين مثل
    المحامين وأطباء الأسنان والأطباء .
  - تشير معاني DH DH عموما إلى الزوج العزيز أو الزوج الحبيب . عادة ، هذا شكل من أشكال
    المودة المكتوبة التي تستخدمها الزوجات على الإنترنت عند الإشارة إلى أزواجهن .
- source_sentence: أين الفيفا
  sentences:
  - هل تخطط لزيارة روسيا لحضور كأس القارات 2017 FIFA أو كأس العالم FIFA 2018 ؟ [رابط]
    هي البوابة السياحية للحكومة الروسية وتزود المشجعين الذين يسافرون إلى روسيا بمعلومات
    مفيدة عن الدولة المضيفة لكأس العالم FIFA المقبلة .
  - '1 أصغر لاعب أرجنتيني سجل في نهائيات كأس العالم FIFA : عمره 18 عاما و 357 يوما
    في عام 2006 ضد صربيا والجبل الأسود . 2 أصغر لاعب بلغ 100 مباراة دولية في تاريخ
    الكونميبول ( 27 عاما ، 361 يوما ) .'
  - Hotels Near Creation Museum مزيد من المعلومات . . يقع مقر متحف Creation في مدينة
    بطرسبورغ بولاية كنتاكي . من خلال الأموال الخاصة لبناء المتحف ، بدأ Young Earth
    Creationists ( YEC ) المتحف في عام 2011 . مفتوح للجمهور ، تم إنشاء متحف Creation
    لتعزيز وتثقيف الزوار حول نظرية الخلق التي تشرح أصل الأرض . الخلق كما يرويه التفسير
    الحرفي لسفر التكوين التوراتي .
- source_sentence: ما هي صمامات الفراشة المستخدمة
  sentences:
  - سوف يتصل بك المختبر قائلا إن الأنبوب لم يكن ممتلئا وستتساءل عن السبب . تختلف إبر
    الفراشة لجمع الدم عن إبر الفراشة للوريد في أنها تحتوي على إبرة مغطاة بالغمد في
    النهاية حتى تتمكن من إرفاقها بحامل الفراغ وثقب الأنابيب .
  - 1 قم دائما بشحن جهازك قبل مغادرة المنزل ، خاصة في الرحلات الطويلة . 2 أحضر الشاحن
    معك إذا كنت ستغادر طوال الليل أو لفترة طويلة . 3 بينما من المقرر أن تدوم بطارية
    iPad حتى 10 ساعات ، فإن الاستخدام المتكرر سيقصر هذا الوقت بشكل كبير . كيفية إطالة
    عمر بطارية جهاز iPad . تماما كما هو الحال مع iPhone أو iPod Touch ، سيكون عمر
    بطارية iPad أقصر أثناء الاستخدام الكثيف . ومع ذلك ، هناك بعض الإجراءات التي يمكنك
    اتخاذها للحفاظ على جهازك قيد التشغيل ونشطا لساعات من الاستمتاع ، وتوضح هذه المقالة
    ما يمكنك القيام به لإطالة عمر البطارية .
  - صمامات AWWA الفراشة عبارة عن صمامات سريعة الفتح تتكون من قرص دائري معدني أو ريشة
    مع محاورها المحورية بزوايا قائمة لاتجاه التدفق في الأنبوب ، والتي عند تدويرها
    على عمود ، تسد المقاعد في جسم الصمام . تستخدم عادة كصمامات خنق للتحكم في التدفق
    .
- source_sentence: ما هو طلاء تمبرا
  sentences:
  - يحفظ . غالبا ما يشار إليه باسم طلاء الملصقات ، وهو عبارة عن صبغة مائية ممزوجة
    بعامل ربط كيميائي . يستخدم على نطاق واسع لمشاريع الأطفال والحرف اليدوية بسبب مرونته
    وألوانه الزاهية وسهولة استخدامه . يتوفر طلاء تمبرا أيضا في مسحوق ، والذي يصبح
    جاهزا للطلاء عند مزجه بالماء .
  - يتم تحديث ألوان الطلاء الأكثر مبيعا لدينا يوميا لمنحك أحدث اتجاهات ألوان الطلاء
    . تحقق من ألوان الطلاء الأكثر شيوعا لدينا وابحث عن اللون المناسب لك . يتم تحديث
    ألوان الطلاء الأكثر مبيعا لدينا يوميا لمنحك أحدث اتجاهات ألوان الطلاء . تحقق من
    ألوان الطلاء الأكثر شيوعا لدينا وابحث عن اللون المناسب لك .
  - 'لغة إجرائية . تم التحديث : 04 - 26 - 2017 بواسطة . اللغة الإجرائية هي لغة برمجة
    كمبيوتر تتبع بالترتيب مجموعة من الأوامر . من أمثلة اللغات الإجرائية للكمبيوتر
    BASIC و C و FORTRAN و Pascal . شروط البرمجة'
- source_sentence: تحديد المسح
  sentences:
  - المسح أو مسح الأراضي هو تقنية ومهنة وعلم تحديد المواقع الأرضية أو ثلاثية الأبعاد
    للنقاط والمسافات والزوايا بينها . يطلق على أخصائي مسح الأراضي اسم مساح الأراضي
    .
  - جمعية إعادة تأهيل العظام ( ORA ) هي فريق من المتخصصين في العلاج الطبيعي في كولورادو
    سبرينغز . سيساعدك هؤلاء المتخصصون في التغلب على القيود الجسدية لمساعدتك على العودة
    إلى أعلى مستوى ممكن من الوظائف .
  - إجمالي المحطات . تعد المحطات الإجمالية واحدة من أكثر أدوات المسح شيوعا المستخدمة
    اليوم . وهي تتألف من جهاز ثيودوليت إلكتروني ومكون إلكتروني لقياس المسافة ( EDM
    ) . تتوفر أيضا محطات روبوتية كاملة تتيح التشغيل لشخص واحد من خلال التحكم في الجهاز
    باستخدام جهاز التحكم عن بعد . تاريخ
model-index:
- name: SentenceTransformer based on abdoelsayed/AraDPR
  results:
  - task:
      type: reranking
      name: Reranking
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: map
      value: 0.5469561036637695
      name: Map
    - type: mrr@10
      value: 0.5489391534391534
      name: Mrr@10
    - type: ndcg@10
      value: 0.6230636076274872
      name: Ndcg@10
---

# SentenceTransformer based on abdoelsayed/AraDPR

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [abdoelsayed/AraDPR](https://huggingface.co/abdoelsayed/AraDPR). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [abdoelsayed/AraDPR](https://huggingface.co/abdoelsayed/AraDPR) <!-- at revision b5655f33f56d0d301dd6950872898bc45867807b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("hatemestinbejaia/KDAraDPR2_initialversion0")
# Run inference
sentences = [
    'تحديد المسح',
    'المسح أو مسح الأراضي هو تقنية ومهنة وعلم تحديد المواقع الأرضية أو ثلاثية الأبعاد للنقاط والمسافات والزوايا بينها . يطلق على أخصائي مسح الأراضي اسم مساح الأراضي .',
    'إجمالي المحطات . تعد المحطات الإجمالية واحدة من أكثر أدوات المسح شيوعا المستخدمة اليوم . وهي تتألف من جهاز ثيودوليت إلكتروني ومكون إلكتروني لقياس المسافة ( EDM ) . تتوفر أيضا محطات روبوتية كاملة تتيح التشغيل لشخص واحد من خلال التحكم في الجهاز باستخدام جهاز التحكم عن بعد . تاريخ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Reranking

* Evaluated with [<code>RerankingEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.RerankingEvaluator)

| Metric  | Value     |
|:--------|:----------|
| **map** | **0.547** |
| mrr@10  | 0.5489    |
| ndcg@10 | 0.6231    |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `gradient_accumulation_steps`: 8
- `learning_rate`: 7e-05
- `warmup_ratio`: 0.07
- `fp16`: True
- `half_precision_backend`: amp
- `load_best_model_at_end`: True
- `fp16_backend`: amp

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 7e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.07
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: amp
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: amp
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch     | Step      | Training Loss | loss      | map        |
|:---------:|:---------:|:-------------:|:---------:|:----------:|
| 0.0512    | 2000      | 0.0019        | 0.0045    | 0.4548     |
| 0.1024    | 4000      | 0.0011        | 0.0039    | 0.4988     |
| 0.1536    | 6000      | 0.001         | 0.0034    | 0.4871     |
| 0.2048    | 8000      | 0.0009        | 0.0032    | 0.4811     |
| 0.256     | 10000     | 0.0009        | 0.0032    | 0.4641     |
| 0.3072    | 12000     | 0.0008        | 0.0028    | 0.4540     |
| 0.3584    | 14000     | 0.0007        | 0.0027    | 0.4918     |
| 0.4096    | 16000     | 0.0007        | 0.0024    | 0.5039     |
| 0.4608    | 18000     | 0.0006        | 0.0024    | 0.5051     |
| 0.512     | 20000     | 0.0006        | 0.0021    | 0.4772     |
| 0.5632    | 22000     | 0.0006        | 0.0021    | 0.5110     |
| 0.6144    | 24000     | 0.0005        | 0.0020    | 0.5286     |
| 0.6656    | 26000     | 0.0005        | 0.0020    | 0.5217     |
| 0.7168    | 28000     | 0.0005        | 0.0018    | 0.5193     |
| 0.768     | 30000     | 0.0005        | 0.0018    | 0.5152     |
| 0.8192    | 32000     | 0.0005        | 0.0017    | 0.5322     |
| 0.8704    | 34000     | 0.0004        | 0.0016    | 0.5296     |
| 0.9216    | 36000     | 0.0004        | 0.0016    | 0.5266     |
| 0.9728    | 38000     | 0.0004        | 0.0015    | 0.5244     |
| 1.024     | 40000     | 0.0004        | 0.0014    | 0.5251     |
| 1.0752    | 42000     | 0.0003        | 0.0014    | 0.5202     |
| 1.1264    | 44000     | 0.0003        | 0.0014    | 0.5089     |
| 1.1776    | 46000     | 0.0003        | 0.0013    | 0.5030     |
| 1.2288    | 48000     | 0.0003        | 0.0013    | 0.5184     |
| 1.28      | 50000     | 0.0003        | 0.0012    | 0.5267     |
| 1.3312    | 52000     | 0.0003        | 0.0012    | 0.5386     |
| 1.3824    | 54000     | 0.0003        | 0.0012    | 0.5254     |
| 1.4336    | 56000     | 0.0003        | 0.0012    | 0.5378     |
| 1.4848    | 58000     | 0.0003        | 0.0011    | 0.5324     |
| 1.536     | 60000     | 0.0003        | 0.0011    | 0.5364     |
| 1.5872    | 62000     | 0.0003        | 0.0011    | 0.5412     |
| 1.6384    | 64000     | 0.0003        | 0.0010    | 0.5339     |
| 1.6896    | 66000     | 0.0003        | 0.0010    | 0.5452     |
| 1.7408    | 68000     | 0.0003        | 0.0010    | 0.5557     |
| **1.792** | **70000** | **0.0002**    | **0.001** | **0.5619** |
| 1.8432    | 72000     | 0.0002        | 0.0010    | 0.5512     |
| 1.8944    | 74000     | 0.0002        | 0.0010    | 0.5434     |
| 1.9456    | 76000     | 0.0002        | 0.0009    | 0.5367     |
| 1.9968    | 78000     | 0.0002        | 0.0009    | 0.5497     |
| 2.048     | 80000     | 0.0002        | 0.0009    | 0.5459     |
| 2.0992    | 82000     | 0.0002        | 0.0009    | 0.5616     |
| 2.1504    | 84000     | 0.0002        | 0.0009    | 0.5573     |
| 2.2016    | 86000     | 0.0002        | 0.0009    | 0.5526     |
| 2.2528    | 88000     | 0.0002        | 0.0008    | 0.5557     |
| 2.304     | 90000     | 0.0002        | 0.0008    | 0.5470     |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu121
- Accelerate: 1.2.0
- Datasets: 3.0.1
- Tokenizers: 0.20.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MarginMSELoss
```bibtex
@misc{hofstätter2021improving,
    title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
    author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
    year={2021},
    eprint={2010.02666},
    archivePrefix={arXiv},
    primaryClass={cs.IR}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->