--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer model-index: - name: xlm_r_large-baseline_model-v2-fallen-oath-3 results: [] --- # xlm_r_large-baseline_model-v2-fallen-oath-3 This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on [SOLD](https://huggingface.co/datasets/sinhala-nlp/SOLD) dataset. It achieves the following results on the evaluation set: - Loss: 0.5036 - Precision 0: 0.8766 - Precision 1: 0.7911 - Recall 0: 0.8512 - Recall 1: 0.8246 - F1 0: 0.8637 - F1 1: 0.8075 - Precision Weighted: 0.8419 - Recall Weighted: 0.8404 - F1 Weighted: 0.8409 - F1 Macro: 0.8356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision 0 | Precision 1 | Recall 0 | Recall 1 | F1 0 | F1 1 | Precision Weighted | Recall Weighted | F1 Weighted | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-----------:|:--------:|:--------:|:------:|:------:|:------------------:|:---------------:|:-----------:|:--------:| | 0.4937 | 1.0 | 469 | 0.4268 | 0.8346 | 0.7933 | 0.8667 | 0.7488 | 0.8503 | 0.7704 | 0.8179 | 0.8188 | 0.8179 | 0.8104 | | 0.3945 | 2.0 | 938 | 0.3987 | 0.9083 | 0.7168 | 0.7603 | 0.8877 | 0.8277 | 0.7931 | 0.8305 | 0.812 | 0.8137 | 0.8104 | | 0.3721 | 3.0 | 1407 | 0.3612 | 0.8654 | 0.7992 | 0.8620 | 0.8039 | 0.8637 | 0.8016 | 0.8386 | 0.8384 | 0.8385 | 0.8326 | | 0.2721 | 4.0 | 1876 | 0.4191 | 0.8514 | 0.8246 | 0.8875 | 0.7734 | 0.8691 | 0.7982 | 0.8405 | 0.8412 | 0.8403 | 0.8336 | | 0.2144 | 5.0 | 2345 | 0.5036 | 0.8766 | 0.7911 | 0.8512 | 0.8246 | 0.8637 | 0.8075 | 0.8419 | 0.8404 | 0.8409 | 0.8356 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1