File size: 1,968 Bytes
83707b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
base_model: muchad/idt5-base
library_name: peft
license: apache-2.0
metrics:
- rouge
- bleu
tags:
- generated_from_trainer
model-index:
- name: idt5-base-ae_adapter
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# idt5-base-ae_adapter

This model is a fine-tuned version of [muchad/idt5-base](https://huggingface.co/muchad/idt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1132
- Rouge1: 0.3358
- Rouge2: 0.1831
- Rougel: 0.3088
- Rougelsum: 0.3109
- Bleu: 0.1408

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu   |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:------:|
| 1.35          | 1.0   | 3390  | 1.2546          | 0.2972 | 0.1424 | 0.2697 | 0.2722    | 0.1256 |
| 1.1749        | 2.0   | 6780  | 1.1832          | 0.3197 | 0.1655 | 0.2940 | 0.2961    | 0.1313 |
| 1.1447        | 3.0   | 10170 | 1.1313          | 0.3279 | 0.1742 | 0.3024 | 0.3043    | 0.1372 |
| 1.1106        | 4.0   | 13560 | 1.1294          | 0.3308 | 0.1790 | 0.3045 | 0.3065    | 0.1386 |
| 1.0842        | 5.0   | 16950 | 1.1132          | 0.3358 | 0.1831 | 0.3088 | 0.3109    | 0.1408 |


### Framework versions

- PEFT 0.13.2
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0