File size: 2,487 Bytes
068eb9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---

license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: batch-size16_FFPP-raw_opencv-1FPS_faces-expand0-aligned_unaugmentation_seed-random_143_4090
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9873394745201253
    - name: Precision
      type: precision
      value: 0.9884711707303031
    - name: Recall
      type: recall
      value: 0.9954342532467533
    - name: F1
      type: f1
      value: 0.9919404925254568
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# batch-size16_FFPP-raw_opencv-1FPS_faces-expand0-aligned_unaugmentation_seed-random_143_4090



This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.

It achieves the following results on the evaluation set:

- Loss: 0.0352

- Accuracy: 0.9873

- Precision: 0.9885

- Recall: 0.9954

- F1: 0.9919

- Roc Auc: 0.9991



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1



### Training results



| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Roc Auc |

|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|

| 0.0441        | 0.9996 | 1377 | 0.0352          | 0.9873   | 0.9885    | 0.9954 | 0.9919 | 0.9991  |





### Framework versions



- Transformers 4.41.2

- Pytorch 2.3.1

- Datasets 2.20.0

- Tokenizers 0.19.1