--- license: apache-2.0 --- For Inference: - Download dependencies: ```bash pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" pip install --no-deps trl peft accelerate bitsandbytes triton xformers ``` - Infer part: ```python from operator import index from unsloth import FastLanguageModel import torch max_seq_length = 2048 # Choose any! Llama 3 is up to 8k dtype = None load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. alpaca_prompt = """ حلل العاطفة متاع النص الموجود بين الأقواس المربعة، وقرّر إذا كان إيجابي ولا سلبي، ورجع الجواب كعلامة عاطفية متطابقة "إيجابي" ولا "سلبي". ### Instruction: {} ### Response: {}""" model, tokenizer = FastLanguageModel.from_pretrained( model_name = "hedhoud12/Llama-3.2-1B-Instruct_Tunisian_sentiment_analysis", # your trained model max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, ) FastLanguageModel.for_inference(model) inputs = tokenizer( [ alpaca_prompt.format( "برا وليدي رابي يناجحك", # instruction "", # output - leave this blank for generation! ) ], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) tokenizer.batch_decode(outputs)[0].split("### Response:")[1].strip() ``` - The result will be like : ```bash ==((====))== Unsloth 2024.9.post4: Fast Llama patching. Transformers = 4.44.2. \\ /| GPU: Tesla T4. Max memory: 14.748 GB. Platform = Linux. O^O/ \_/ \ Pytorch: 2.4.1+cu121. CUDA = 7.5. CUDA Toolkit = 12.1. \ / Bfloat16 = FALSE. FA [Xformers = 0.0.28.post1. FA2 = False] "-____-" Free Apache license: http://github.com/unslothai/unsloth Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored! كلام إيجابي<|eot_id|> ```