--- datasets: - heegyu/wizard_vicuna_70k_v2 license: apache-2.0 --- Hyperparameters - 3/8 epoch(3rd epoch checkpoing while 8epoch training) - 1e-4 -> 1e-5 with cosine lr decay - batch size 128 - max sequence length 2048 - AdamW(weigth decay=0.01, b1=0.9, b2=0.99, grad_clip=1.0) - no warmup - BF16 - Base Model: [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("heegyu/WizardVicuna-open-llama-3b-v2") model = AutoModelForCausalLM.from_pretrained("heegyu/WizardVicuna-open-llama-3b-v2") inputs = tokenizer(["Human: Hi, nice to meet you!\n\nAssistant: "], return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=16) print(tokenizer.batch_decode(outputs, skip_special_tokens=False)) ``` output: `['Human: Hi, nice to meet you!\n\nAssistant: Hello. Great to meet you too. Well, how can I assist you today?<|endoftext|>']` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_heegyu__WizardVicuna-open-llama-3b-v2) | Metric | Value | |-----------------------|---------------------------| | Avg. | 34.11 | | ARC (25-shot) | 37.71 | | HellaSwag (10-shot) | 66.6 | | MMLU (5-shot) | 27.23 | | TruthfulQA (0-shot) | 36.8 | | Winogrande (5-shot) | 63.3 | | GSM8K (5-shot) | 0.99 | | DROP (3-shot) | 6.12 |