--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-large-v3 tags: - automatic-speech-recognition - whisper - arabic - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-ar-resturant-6 results: [] --- # whisper-large-v3-ar-resturant-6 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the heikal/arabic_call_splitted_6and7 dataset. It achieves the following results on the evaluation set: - Loss: 1.6293 - Wer: 64.3505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:-------:| | 0.0004 | 111.1111 | 1000 | 1.6293 | 64.3505 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.20.1