--- license: mit language: - zh pipeline_tag: sentence-similarity --- # PromCSE(sup) ## Data List The following datasets are all in Chinese. | Data | size(train) | size(valid) | size(test) | |:----------------------:|:----------:|:----------:|:----------:| | [ATEC](https://link.zhihu.com/?target=https%3A//pan.baidu.com/s/1gmnyz9emqOXwaHhSM9CCUA%3Fpwd%3Db17c) | 62477| 20000| 20000| | [BQ](https://link.zhihu.com/?target=https%3A//pan.baidu.com/s/1M-e01yyy5NacVPrph9fbaQ%3Fpwd%3Dtis9) | 100000| 10000| 10000| | [LCQMC](https://pan.baidu.com/s/16DfE7fHrCkk4e8a2j3SYUg?pwd=bc8w ) | 238766| 8802| 12500| | [PAWSX](https://link.zhihu.com/?target=https%3A//pan.baidu.com/s/1ox0tJY3ZNbevHDeAqDBOPQ%3Fpwd%3Dmgjn) | 49401| 2000| 2000| | [STS-B](https://link.zhihu.com/?target=https%3A//pan.baidu.com/s/10yfKfTtcmLQ70-jzHIln1A%3Fpwd%3Dgf8y) | 5231| 1458| 1361| | [*SNLI*](https://link.zhihu.com/?target=https%3A//pan.baidu.com/s/1NOgA7JwWghiauwGAUvcm7w%3Fpwd%3Ds75v) | 146828| 2699| 2618| | [*MNLI*](https://link.zhihu.com/?target=https%3A//pan.baidu.com/s/1xjZKtWk3MAbJ6HX4pvXJ-A%3Fpwd%3D2kte) | 122547| 2932| 2397| ## Model List The evaluation dataset is in Chinese, and we used the same language model **RoBERTa Large** on different methods. In addition, considering that the test set of some datasets is small, which may lead to a large deviation in evaluation accuracy, the evaluation data here uses train, valid and test at the same time, and the final evaluation result adopts the **weighted average (w-avg)** method. | Model | STS-B(w-avg) | ATEC | BQ | LCQMC | PAWSX | Avg. | |:-----------------------:|:------------:|:-----------:|:----------|:----------|:----------:|:----------:| | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 78.61| -| -| -| -| -| | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 79.07| -| -| -| -| -| | [hellonlp/simcse-large-zh](https://huggingface.co/hellonlp/simcse-roberta-large-zh) | 81.32| -| -| -| -| -| | [hellonlp/promcse-large-zh](https://huggingface.co/hellonlp/promcse-bert-large-zh) | 81.63| -| -| -| -| -| ## Uses To use the tool, first install the `promcse` package from [PyPI](https://pypi.org/project/promcse/) ```bash pip install promcse ``` After installing the package, you can load our model by two lines of code ```python from promcse import PromCSE model = PromCSE("hellonlp/promcse-bert-large-zh", "cls", 10) ``` Then you can use our model for encoding sentences into embeddings ```python embeddings = model.encode("武汉是一个美丽的城市。") print(embeddings.shape) #torch.Size([1024]) ``` Compute the cosine similarities between two groups of sentences ```python sentences_a = ['你好吗'] sentences_b = ['你怎么样','我吃了一个苹果','你过的好吗','你还好吗','你', '你好不好','你好不好呢','我不开心','我好开心啊', '你吃饭了吗', '你好吗','你现在好吗','你好个鬼'] similarities = model.similarity(sentences_a, sentences_b) print(similarities) # [(1.0, '你好吗'), # (0.9324, '你好不好'), # (0.8945, '你好不好呢'), # (0.8845, '你还好吗'), # (0.8382, '你现在好吗'), # (0.8072, '你过的好吗'), # (0.7648, '你怎么样'), # (0.6736, '你'), # (0.5706, '你吃饭了吗'), # (0.5417, '你好个鬼'), # (0.3747, '我好开心啊'), # (0.0777, '我不开心'), # (0.0624, '我吃了一个苹果')] ```