henryscheible
commited on
Commit
•
25b93b4
1
Parent(s):
91a7161
update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the crows_pairs dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss:
|
35 |
-
- Accuracy: 0.
|
|
|
|
|
|
|
|
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -51,75 +55,65 @@ More information needed
|
|
51 |
### Training hyperparameters
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
-
- learning_rate:
|
55 |
- train_batch_size: 64
|
56 |
- eval_batch_size: 64
|
57 |
- seed: 42
|
58 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
- lr_scheduler_type: linear
|
60 |
-
- num_epochs:
|
61 |
|
62 |
### Training results
|
63 |
|
64 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
65 |
-
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.0002 | 25.26 | 480 | 2.5143 | 0.6954 |
|
114 |
-
| 0.0001 | 25.79 | 490 | 2.5629 | 0.6821 |
|
115 |
-
| 0.0002 | 26.32 | 500 | 2.5414 | 0.6887 |
|
116 |
-
| 0.0001 | 26.84 | 510 | 2.5301 | 0.7119 |
|
117 |
-
| 0.0012 | 27.37 | 520 | 2.5360 | 0.7020 |
|
118 |
-
| 0.0 | 27.89 | 530 | 2.5428 | 0.6921 |
|
119 |
-
| 0.0117 | 28.42 | 540 | 2.5455 | 0.6954 |
|
120 |
-
| 0.0001 | 28.95 | 550 | 2.5598 | 0.7086 |
|
121 |
-
| 0.0001 | 29.47 | 560 | 2.5648 | 0.7119 |
|
122 |
-
| 0.0001 | 30.0 | 570 | 2.5652 | 0.7119 |
|
123 |
|
124 |
|
125 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.5
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the crows_pairs dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.6933
|
35 |
+
- Accuracy: 0.5
|
36 |
+
- Tp: 0.5
|
37 |
+
- Tn: 0.0
|
38 |
+
- Fp: 0.5
|
39 |
+
- Fn: 0.0
|
40 |
|
41 |
## Model description
|
42 |
|
|
|
55 |
### Training hyperparameters
|
56 |
|
57 |
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 0.0001
|
59 |
- train_batch_size: 64
|
60 |
- eval_batch_size: 64
|
61 |
- seed: 42
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 50
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp | Tn | Fp | Fn |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:|
|
70 |
+
| 0.7406 | 1.05 | 20 | 0.6941 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
71 |
+
| 0.7008 | 2.11 | 40 | 0.6959 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
72 |
+
| 0.7067 | 3.16 | 60 | 0.6932 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
73 |
+
| 0.7029 | 4.21 | 80 | 0.6937 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
74 |
+
| 0.7103 | 5.26 | 100 | 0.6932 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
75 |
+
| 0.7085 | 6.32 | 120 | 0.7004 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
76 |
+
| 0.7061 | 7.37 | 140 | 0.6933 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
77 |
+
| 0.7013 | 8.42 | 160 | 0.6954 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
78 |
+
| 0.6952 | 9.47 | 180 | 0.6933 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
79 |
+
| 0.7084 | 10.53 | 200 | 0.7079 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
80 |
+
| 0.71 | 11.58 | 220 | 0.6999 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
81 |
+
| 0.7036 | 12.63 | 240 | 0.6932 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
82 |
+
| 0.7043 | 13.68 | 260 | 0.6942 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
83 |
+
| 0.7058 | 14.74 | 280 | 0.6947 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
84 |
+
| 0.6993 | 15.79 | 300 | 0.6951 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
85 |
+
| 0.7009 | 16.84 | 320 | 0.6936 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
86 |
+
| 0.7069 | 17.89 | 340 | 0.7002 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
87 |
+
| 0.7068 | 18.95 | 360 | 0.6970 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
88 |
+
| 0.7042 | 20.0 | 380 | 0.6935 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
89 |
+
| 0.6999 | 21.05 | 400 | 0.6957 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
90 |
+
| 0.6966 | 22.11 | 420 | 0.6936 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
91 |
+
| 0.6975 | 23.16 | 440 | 0.6934 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
92 |
+
| 0.7043 | 24.21 | 460 | 0.6934 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
93 |
+
| 0.7002 | 25.26 | 480 | 0.6932 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
94 |
+
| 0.7039 | 26.32 | 500 | 0.7004 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
95 |
+
| 0.6927 | 27.37 | 520 | 0.6932 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
96 |
+
| 0.7078 | 28.42 | 540 | 0.6941 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
97 |
+
| 0.6999 | 29.47 | 560 | 0.6969 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
98 |
+
| 0.7063 | 30.53 | 580 | 0.6936 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
99 |
+
| 0.7011 | 31.58 | 600 | 0.6934 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
100 |
+
| 0.7061 | 32.63 | 620 | 0.6958 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
101 |
+
| 0.6971 | 33.68 | 640 | 0.6932 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
102 |
+
| 0.7007 | 34.74 | 660 | 0.6932 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
103 |
+
| 0.7014 | 35.79 | 680 | 0.6954 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
104 |
+
| 0.6976 | 36.84 | 700 | 0.6951 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
105 |
+
| 0.6957 | 37.89 | 720 | 0.6936 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
106 |
+
| 0.7009 | 38.95 | 740 | 0.6950 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
107 |
+
| 0.6941 | 40.0 | 760 | 0.6933 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
108 |
+
| 0.6989 | 41.05 | 780 | 0.6948 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
109 |
+
| 0.6935 | 42.11 | 800 | 0.6974 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
110 |
+
| 0.6939 | 43.16 | 820 | 0.6956 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
|
111 |
+
| 0.6975 | 44.21 | 840 | 0.6955 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
112 |
+
| 0.669 | 45.26 | 860 | 0.7089 | 0.5132 | 0.1623 | 0.3510 | 0.1490 | 0.3377 |
|
113 |
+
| 0.6896 | 46.32 | 880 | 0.7088 | 0.4669 | 0.4106 | 0.0563 | 0.4437 | 0.0894 |
|
114 |
+
| 0.6942 | 47.37 | 900 | 0.6944 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
115 |
+
| 0.6942 | 48.42 | 920 | 0.6933 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
116 |
+
| 0.6921 | 49.47 | 940 | 0.6933 | 0.5 | 0.5 | 0.0 | 0.5 | 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
|
119 |
### Framework versions
|