heriosousa
commited on
Commit
•
cd8cd5a
1
Parent(s):
735b927
Push the PPO Lunar Lander trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 242.77 +/- 18.06
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f87bb3b7200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f87bb3b7290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f87bb3b7320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f87bb3b73b0>", "_build": "<function ActorCriticPolicy._build at 0x7f87bb3b7440>", "forward": "<function ActorCriticPolicy.forward at 0x7f87bb3b74d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f87bb3b7560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f87bb3b75f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f87bb3b7680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f87bb3b7710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f87bb3b77a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f87bb40a2a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651715154.3028023, "learning_rate": 0.003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9ok3S8an76hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo1tzyk0H+7pQESvjdg07z+saO8mpapvQAAgD8AAIA/MwPsukiDl7q9YmczyW1xruU5Nrr47a+zAACAPwAAgD/Nows9w8FzunLJMDpfcg82VVGsutgwTbkAAIA/AACAP030Zj3pJqY/SJMLP2wVEb+KSky9kjoivQAAAAAAAAAApnY5Ph+e4T7STBu7ZCaMvsv8Ij4nXiq9AAAAAAAAAADKx4u+B/AlP50bmT6Z88W+NZQwvuZXTT4AAAAAAAAAAACz4jwpXE66llnLNj7urDHk3nI7RsrvtQAAgD8AAIA/5lh4vY9mVbpsKaU1EuwVMTX3VTtWScC0AACAPwAAgD+aVYw8CBjvPWt3w72LdO+9sdsmvVVUjjwAAAAAAAAAAID0sj0Yeaw+oM5zPa+Cob5Adww+QRqSvQAAAAAAAAAAmhkxuxRSpj9nLDW80TgGv1wUszpCsT68AAAAAAAAAAAzdAY9j94xusp6BT198Ja9B07OO0ID5b4AAAAAAACAP9r4lz2u44q6xrgXuWwNtbWBMBE7vvowOAAAgD8AAIA/zWxHOuULeD4do4Q+xlyFvk5d8D2NuFE8AAAAAAAAAADm7oo+HcoTvSIuSbrg6bU4LvmEvnp7gTkAAIA/AACAP5obLjxxD7M98SY/vSIyx70RcqO9ujULPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAFgdOVJuckCUhpRSlIwBbJRL2IwBdJRHQIPyyNyYG+t1fZQoaAZoCWgPQwjs98Q6VQZMQJSGlFKUaBVLpmgWR0CD9I4ecQRPdX2UKGgGaAloD0MImWVPApvcXkCUhpRSlGgVTegDaBZHQIP3Kf4AS391fZQoaAZoCWgPQwgiGt1B7FdfQJSGlFKUaBVN6ANoFkdAg/eVO9FnZnV9lChoBmgJaA9DCN7Jp8e2+2tAlIaUUpRoFUvvaBZHQIP5CrWAf+11fZQoaAZoCWgPQwjrqkAtxn5wQJSGlFKUaBVL7mgWR0CENaOOKfnPdX2UKGgGaAloD0MIW+uLhLahUUCUhpRSlGgVTegDaBZHQIQ2oK2KEWZ1fZQoaAZoCWgPQwjdRC3NbRNyQJSGlFKUaBVLyGgWR0CEPc6Mir1edX2UKGgGaAloD0MIm44AbhbFcUCUhpRSlGgVTRcBaBZHQIRAwuscQy11fZQoaAZoCWgPQwhJ9Z1flAxyQJSGlFKUaBVNIgFoFkdAhEHk7OmixnV9lChoBmgJaA9DCLlRZK1hqXBAlIaUUpRoFU00AWgWR0CEQv/ACW/rdX2UKGgGaAloD0MIiZXRyCc8cECUhpRSlGgVS/hoFkdAhEQaWom5UnV9lChoBmgJaA9DCLIrLSM1KXNAlIaUUpRoFUvnaBZHQIRFOfNA1Nx1fZQoaAZoCWgPQwi+oIUEzA9zQJSGlFKUaBVNcwFoFkdAhEgWiL2pQ3V9lChoBmgJaA9DCBk6dlAJ3GtAlIaUUpRoFU11AWgWR0CES8x0MgEEdX2UKGgGaAloD0MIm5FB7qIHbkCUhpRSlGgVTTABaBZHQIRQsMRYigV1fZQoaAZoCWgPQwisdHedjVFuQJSGlFKUaBVNXwFoFkdAhFDYdZJTVHV9lChoBmgJaA9DCGMMrOM4iXBAlIaUUpRoFU0yAWgWR0CEUc/UONHZdX2UKGgGaAloD0MIw2Fp4EcWc0CUhpRSlGgVTWwBaBZHQIRTfeN1hb51fZQoaAZoCWgPQwhUpwNZz+hiQJSGlFKUaBVN6ANoFkdAhFYuv+wTunV9lChoBmgJaA9DCLRWtDlOWHNAlIaUUpRoFUvraBZHQIRWw+UyHmB1fZQoaAZoCWgPQwj2fThIiLNxQJSGlFKUaBVNGwFoFkdAhFcgk1Mue3V9lChoBmgJaA9DCNo6ONgblGxAlIaUUpRoFU1BAmgWR0CEWVxp+MIedX2UKGgGaAloD0MIy9b6IiEUcUCUhpRSlGgVTUUBaBZHQIRdHizcAR11fZQoaAZoCWgPQwhMUMO3cPBxQJSGlFKUaBVNIwFoFkdAhF6TmwJPZnV9lChoBmgJaA9DCKta0lHO7XBAlIaUUpRoFU0xAWgWR0CEXqbb1yvLdX2UKGgGaAloD0MIgqj7AORscUCUhpRSlGgVTVMBaBZHQIRgXCyhSLt1fZQoaAZoCWgPQwjFWKZf4ndwQJSGlFKUaBVNCQFoFkdAhGcpJXhfjXV9lChoBmgJaA9DCMvY0M3+3nBAlIaUUpRoFU0nAWgWR0CEa0X668QJdX2UKGgGaAloD0MI+mAZGzrya0CUhpRSlGgVTTwBaBZHQIRsKJyhi9Z1fZQoaAZoCWgPQwhIUz2Z/+RwQJSGlFKUaBVNJQFoFkdAhG0bIkqto3V9lChoBmgJaA9DCK6dKAkJ2m9AlIaUUpRoFUv8aBZHQIRtc4aP0Zp1fZQoaAZoCWgPQwi95H/y90FwQJSGlFKUaBVNuAFoFkdAhG8xgJC0GHV9lChoBmgJaA9DCOIC0CjdE3FAlIaUUpRoFU1KAWgWR0CEc8/IKc/ddX2UKGgGaAloD0MIzR39L1dWcECUhpRSlGgVTSoBaBZHQIR0j9VFQVN1fZQoaAZoCWgPQwiX4qqy78ljQJSGlFKUaBVN6ANoFkdAhHYmN70Fr3V9lChoBmgJaA9DCNxKr81GWWZAlIaUUpRoFU3oA2gWR0CEd9oLXtjTdX2UKGgGaAloD0MIYwys4zgocECUhpRSlGgVTRgBaBZHQIR4k3ZPEbZ1fZQoaAZoCWgPQwhi+IiYEpFwQJSGlFKUaBVNHgFoFkdAhHj7p3X7L3V9lChoBmgJaA9DCLdDw2IUH3BAlIaUUpRoFU2CAWgWR0CEeV4dp7C0dX2UKGgGaAloD0MIV3kCYScJcUCUhpRSlGgVTTkBaBZHQIR5ulyimEZ1fZQoaAZoCWgPQwhMT1jiQVJxQJSGlFKUaBVNOgJoFkdAhH1qo60Y0nV9lChoBmgJaA9DCOkN95Hbr21AlIaUUpRoFU1NAWgWR0CEfb36hxo7dX2UKGgGaAloD0MItvepKrTOb0CUhpRSlGgVTQcBaBZHQISBd4cFQl91fZQoaAZoCWgPQwi0AkNWdy1wQJSGlFKUaBVNDAFoFkdAhIKDNyHVPXV9lChoBmgJaA9DCFXcuMV8XG5AlIaUUpRoFU0UAWgWR0CEhbFAE+xGdX2UKGgGaAloD0MIa2PshFf1cUCUhpRSlGgVTXMBaBZHQISGvLvCuU51fZQoaAZoCWgPQwiVY7K4P7ZwQJSGlFKUaBVNUgFoFkdAhIjuvUz9CXV9lChoBmgJaA9DCO4HPDCADG5AlIaUUpRoFU1pAWgWR0CEizFiKBNFdX2UKGgGaAloD0MImG4Sg8BJckCUhpRSlGgVTTYBaBZHQISNWAuqWC51fZQoaAZoCWgPQwjDLLRzmv9uQJSGlFKUaBVNGAFoFkdAhNZXVCojwHV9lChoBmgJaA9DCJ6ayw1GG3BAlIaUUpRoFU1HAWgWR0CE2CLGaQV9dX2UKGgGaAloD0MIEeULWsjBbkCUhpRSlGgVTSwBaBZHQITYly5qdpZ1fZQoaAZoCWgPQwi5xJEHYqRxQJSGlFKUaBVNTAFoFkdAhNopd0JWvXV9lChoBmgJaA9DCHtrYKvE6HBAlIaUUpRoFU1BAWgWR0CE2s4p+c6OdX2UKGgGaAloD0MIejcWFIYScECUhpRSlGgVTQ0BaBZHQITbbEvTPSl1fZQoaAZoCWgPQwhE+u3rgNRwQJSGlFKUaBVNLQFoFkdAhN4cDB/I83V9lChoBmgJaA9DCNeH9Uat8DfAlIaUUpRoFUvNaBZHQITfmX7cfvF1fZQoaAZoCWgPQwhuaTUkridzQJSGlFKUaBVL5WgWR0CE4HiExqO+dX2UKGgGaAloD0MIut3LffKocECUhpRSlGgVTY0BaBZHQIThBUHY6GR1fZQoaAZoCWgPQwi862zIP7FtQJSGlFKUaBVNGQFoFkdAhOFNDUmUn3V9lChoBmgJaA9DCI/k8h9SC3BAlIaUUpRoFU1PAWgWR0CE5CPz4DcNdX2UKGgGaAloD0MI7l7ukyNxcECUhpRSlGgVTRQBaBZHQITo7bzshPl1fZQoaAZoCWgPQwgSpb3Bl6FxQJSGlFKUaBVNXgFoFkdAhO1xnezlcXV9lChoBmgJaA9DCPrwLEGG9HFAlIaUUpRoFU0rAWgWR0CE7XJcPe54dX2UKGgGaAloD0MIttsuNFcmcECUhpRSlGgVTSwBaBZHQITu3A/LTx51fZQoaAZoCWgPQwh9W7BUl2hrQJSGlFKUaBVNIwFoFkdAhPBUjkdWAHV9lChoBmgJaA9DCMVXO4qzGHJAlIaUUpRoFU0ZAWgWR0CE8Q2Hck+pdX2UKGgGaAloD0MIbOun/+zScECUhpRSlGgVTQ4BaBZHQITxdjurp7l1fZQoaAZoCWgPQwgS9u0kYt9xQJSGlFKUaBVNFgFoFkdAhPWDEehf0HV9lChoBmgJaA9DCBctQNvq825AlIaUUpRoFU1RAWgWR0CE9vDl5nlGdX2UKGgGaAloD0MIkKSkhyHjbECUhpRSlGgVTRwBaBZHQIT5ZdpqREF1fZQoaAZoCWgPQwgy6ITQQV1sQJSGlFKUaBVNIwFoFkdAhPlhE0BOpXV9lChoBmgJaA9DCIWVCiqqUnBAlIaUUpRoFU04AWgWR0CE+ik5ZKWcdX2UKGgGaAloD0MIBDxp4XJNcUCUhpRSlGgVTRgDaBZHQIT8vqmj0th1fZQoaAZoCWgPQwjxL4LGDI9yQJSGlFKUaBVNLwFoFkdAhP49kBjnWHV9lChoBmgJaA9DCPRvl/26XnFAlIaUUpRoFU1yAWgWR0CFADv+fh/BdX2UKGgGaAloD0MIdCSX/5CSbUCUhpRSlGgVTfYBaBZHQIUBYarFOwh1fZQoaAZoCWgPQwhmFTYDXGhrQJSGlFKUaBVNEAFoFkdAhQWhYV6/qXV9lChoBmgJaA9DCOIDO/7L7HBAlIaUUpRoFUv2aBZHQIUF4zWPLgZ1fZQoaAZoCWgPQwi06J0KuK9xQJSGlFKUaBVNVgFoFkdAhQZOwHJLd3V9lChoBmgJaA9DCAuW6gIeunBAlIaUUpRoFU06AWgWR0CFB9KqXF98dX2UKGgGaAloD0MIBD3UtiEwcUCUhpRSlGgVTRwBaBZHQIUH7gTAWSF1fZQoaAZoCWgPQwi3J0hs9/JuQJSGlFKUaBVNRwFoFkdAhQjJNCZ4OnV9lChoBmgJaA9DCABXsmMj5G9AlIaUUpRoFU0nAWgWR0CFCUTfzjFRdX2UKGgGaAloD0MIMC3qk9xMbkCUhpRSlGgVTSsBaBZHQIUOdD2Jzkp1fZQoaAZoCWgPQwiY32kyo2NwQJSGlFKUaBVNZwFoFkdAhRJkNWluWXV9lChoBmgJaA9DCBVT6SccwXBAlIaUUpRoFU0/AWgWR0CFErMINVindX2UKGgGaAloD0MIDW5rC89IcECUhpRSlGgVTVsBaBZHQIUVNtuUD+11fZQoaAZoCWgPQwjOUUfHVbVvQJSGlFKUaBVNNwFoFkdAhRXntOVPe3V9lChoBmgJaA9DCFTle0bignBAlIaUUpRoFU0KAWgWR0CFF0qR2bG4dX2UKGgGaAloD0MIc/G3PUFzbECUhpRSlGgVTW4BaBZHQIUXndj5Kvp1fZQoaAZoCWgPQwhNLsbA+kZwQJSGlFKUaBVNAAFoFkdAhRqVWsA/93V9lChoBmgJaA9DCAlupGyRVnBAlIaUUpRoFU1GAWgWR0CFGv20Re1KdX2UKGgGaAloD0MIQwOxbGbHcECUhpRSlGgVTSoBaBZHQIUedtbcGkh1fZQoaAZoCWgPQwge3QiLSiByQJSGlFKUaBVNJAFoFkdAhSANKh+OO3V9lChoBmgJaA9DCBsPtthtxnJAlIaUUpRoFU0tAWgWR0CFIfWuoxYadX2UKGgGaAloD0MIahSSzKoKcUCUhpRSlGgVTUMBaBZHQIUi2tfXwsp1fZQoaAZoCWgPQwhYqgt4maNxQJSGlFKUaBVNgAFoFkdAhSrAntv4unV9lChoBmgJaA9DCL0d4bRggnBAlIaUUpRoFU0LAmgWR0CFKrwrlNlAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 1, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/TMzMzMzMzhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:472024bb338e6eab10c6e1439b808af440185b13043488052efcfff316346f3c
|
3 |
+
size 144029
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f87bb3b7200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f87bb3b7290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f87bb3b7320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f87bb3b73b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f87bb3b7440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f87bb3b74d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f87bb3b7560>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f87bb3b75f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f87bb3b7680>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f87bb3b7710>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f87bb3b77a0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f87bb40a2a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651715154.3028023,
|
51 |
+
"learning_rate": 0.003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9ok3S8an76hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo1tzyk0H+7pQESvjdg07z+saO8mpapvQAAgD8AAIA/MwPsukiDl7q9YmczyW1xruU5Nrr47a+zAACAPwAAgD/Nows9w8FzunLJMDpfcg82VVGsutgwTbkAAIA/AACAP030Zj3pJqY/SJMLP2wVEb+KSky9kjoivQAAAAAAAAAApnY5Ph+e4T7STBu7ZCaMvsv8Ij4nXiq9AAAAAAAAAADKx4u+B/AlP50bmT6Z88W+NZQwvuZXTT4AAAAAAAAAAACz4jwpXE66llnLNj7urDHk3nI7RsrvtQAAgD8AAIA/5lh4vY9mVbpsKaU1EuwVMTX3VTtWScC0AACAPwAAgD+aVYw8CBjvPWt3w72LdO+9sdsmvVVUjjwAAAAAAAAAAID0sj0Yeaw+oM5zPa+Cob5Adww+QRqSvQAAAAAAAAAAmhkxuxRSpj9nLDW80TgGv1wUszpCsT68AAAAAAAAAAAzdAY9j94xusp6BT198Ja9B07OO0ID5b4AAAAAAACAP9r4lz2u44q6xrgXuWwNtbWBMBE7vvowOAAAgD8AAIA/zWxHOuULeD4do4Q+xlyFvk5d8D2NuFE8AAAAAAAAAADm7oo+HcoTvSIuSbrg6bU4LvmEvnp7gTkAAIA/AACAP5obLjxxD7M98SY/vSIyx70RcqO9ujULPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAFgdOVJuckCUhpRSlIwBbJRL2IwBdJRHQIPyyNyYG+t1fZQoaAZoCWgPQwjs98Q6VQZMQJSGlFKUaBVLpmgWR0CD9I4ecQRPdX2UKGgGaAloD0MImWVPApvcXkCUhpRSlGgVTegDaBZHQIP3Kf4AS391fZQoaAZoCWgPQwgiGt1B7FdfQJSGlFKUaBVN6ANoFkdAg/eVO9FnZnV9lChoBmgJaA9DCN7Jp8e2+2tAlIaUUpRoFUvvaBZHQIP5CrWAf+11fZQoaAZoCWgPQwjrqkAtxn5wQJSGlFKUaBVL7mgWR0CENaOOKfnPdX2UKGgGaAloD0MIW+uLhLahUUCUhpRSlGgVTegDaBZHQIQ2oK2KEWZ1fZQoaAZoCWgPQwjdRC3NbRNyQJSGlFKUaBVLyGgWR0CEPc6Mir1edX2UKGgGaAloD0MIm44AbhbFcUCUhpRSlGgVTRcBaBZHQIRAwuscQy11fZQoaAZoCWgPQwhJ9Z1flAxyQJSGlFKUaBVNIgFoFkdAhEHk7OmixnV9lChoBmgJaA9DCLlRZK1hqXBAlIaUUpRoFU00AWgWR0CEQv/ACW/rdX2UKGgGaAloD0MIiZXRyCc8cECUhpRSlGgVS/hoFkdAhEQaWom5UnV9lChoBmgJaA9DCLIrLSM1KXNAlIaUUpRoFUvnaBZHQIRFOfNA1Nx1fZQoaAZoCWgPQwi+oIUEzA9zQJSGlFKUaBVNcwFoFkdAhEgWiL2pQ3V9lChoBmgJaA9DCBk6dlAJ3GtAlIaUUpRoFU11AWgWR0CES8x0MgEEdX2UKGgGaAloD0MIm5FB7qIHbkCUhpRSlGgVTTABaBZHQIRQsMRYigV1fZQoaAZoCWgPQwisdHedjVFuQJSGlFKUaBVNXwFoFkdAhFDYdZJTVHV9lChoBmgJaA9DCGMMrOM4iXBAlIaUUpRoFU0yAWgWR0CEUc/UONHZdX2UKGgGaAloD0MIw2Fp4EcWc0CUhpRSlGgVTWwBaBZHQIRTfeN1hb51fZQoaAZoCWgPQwhUpwNZz+hiQJSGlFKUaBVN6ANoFkdAhFYuv+wTunV9lChoBmgJaA9DCLRWtDlOWHNAlIaUUpRoFUvraBZHQIRWw+UyHmB1fZQoaAZoCWgPQwj2fThIiLNxQJSGlFKUaBVNGwFoFkdAhFcgk1Mue3V9lChoBmgJaA9DCNo6ONgblGxAlIaUUpRoFU1BAmgWR0CEWVxp+MIedX2UKGgGaAloD0MIy9b6IiEUcUCUhpRSlGgVTUUBaBZHQIRdHizcAR11fZQoaAZoCWgPQwhMUMO3cPBxQJSGlFKUaBVNIwFoFkdAhF6TmwJPZnV9lChoBmgJaA9DCKta0lHO7XBAlIaUUpRoFU0xAWgWR0CEXqbb1yvLdX2UKGgGaAloD0MIgqj7AORscUCUhpRSlGgVTVMBaBZHQIRgXCyhSLt1fZQoaAZoCWgPQwjFWKZf4ndwQJSGlFKUaBVNCQFoFkdAhGcpJXhfjXV9lChoBmgJaA9DCMvY0M3+3nBAlIaUUpRoFU0nAWgWR0CEa0X668QJdX2UKGgGaAloD0MI+mAZGzrya0CUhpRSlGgVTTwBaBZHQIRsKJyhi9Z1fZQoaAZoCWgPQwhIUz2Z/+RwQJSGlFKUaBVNJQFoFkdAhG0bIkqto3V9lChoBmgJaA9DCK6dKAkJ2m9AlIaUUpRoFUv8aBZHQIRtc4aP0Zp1fZQoaAZoCWgPQwi95H/y90FwQJSGlFKUaBVNuAFoFkdAhG8xgJC0GHV9lChoBmgJaA9DCOIC0CjdE3FAlIaUUpRoFU1KAWgWR0CEc8/IKc/ddX2UKGgGaAloD0MIzR39L1dWcECUhpRSlGgVTSoBaBZHQIR0j9VFQVN1fZQoaAZoCWgPQwiX4qqy78ljQJSGlFKUaBVN6ANoFkdAhHYmN70Fr3V9lChoBmgJaA9DCNxKr81GWWZAlIaUUpRoFU3oA2gWR0CEd9oLXtjTdX2UKGgGaAloD0MIYwys4zgocECUhpRSlGgVTRgBaBZHQIR4k3ZPEbZ1fZQoaAZoCWgPQwhi+IiYEpFwQJSGlFKUaBVNHgFoFkdAhHj7p3X7L3V9lChoBmgJaA9DCLdDw2IUH3BAlIaUUpRoFU2CAWgWR0CEeV4dp7C0dX2UKGgGaAloD0MIV3kCYScJcUCUhpRSlGgVTTkBaBZHQIR5ulyimEZ1fZQoaAZoCWgPQwhMT1jiQVJxQJSGlFKUaBVNOgJoFkdAhH1qo60Y0nV9lChoBmgJaA9DCOkN95Hbr21AlIaUUpRoFU1NAWgWR0CEfb36hxo7dX2UKGgGaAloD0MItvepKrTOb0CUhpRSlGgVTQcBaBZHQISBd4cFQl91fZQoaAZoCWgPQwi0AkNWdy1wQJSGlFKUaBVNDAFoFkdAhIKDNyHVPXV9lChoBmgJaA9DCFXcuMV8XG5AlIaUUpRoFU0UAWgWR0CEhbFAE+xGdX2UKGgGaAloD0MIa2PshFf1cUCUhpRSlGgVTXMBaBZHQISGvLvCuU51fZQoaAZoCWgPQwiVY7K4P7ZwQJSGlFKUaBVNUgFoFkdAhIjuvUz9CXV9lChoBmgJaA9DCO4HPDCADG5AlIaUUpRoFU1pAWgWR0CEizFiKBNFdX2UKGgGaAloD0MImG4Sg8BJckCUhpRSlGgVTTYBaBZHQISNWAuqWC51fZQoaAZoCWgPQwjDLLRzmv9uQJSGlFKUaBVNGAFoFkdAhNZXVCojwHV9lChoBmgJaA9DCJ6ayw1GG3BAlIaUUpRoFU1HAWgWR0CE2CLGaQV9dX2UKGgGaAloD0MIEeULWsjBbkCUhpRSlGgVTSwBaBZHQITYly5qdpZ1fZQoaAZoCWgPQwi5xJEHYqRxQJSGlFKUaBVNTAFoFkdAhNopd0JWvXV9lChoBmgJaA9DCHtrYKvE6HBAlIaUUpRoFU1BAWgWR0CE2s4p+c6OdX2UKGgGaAloD0MIejcWFIYScECUhpRSlGgVTQ0BaBZHQITbbEvTPSl1fZQoaAZoCWgPQwhE+u3rgNRwQJSGlFKUaBVNLQFoFkdAhN4cDB/I83V9lChoBmgJaA9DCNeH9Uat8DfAlIaUUpRoFUvNaBZHQITfmX7cfvF1fZQoaAZoCWgPQwhuaTUkridzQJSGlFKUaBVL5WgWR0CE4HiExqO+dX2UKGgGaAloD0MIut3LffKocECUhpRSlGgVTY0BaBZHQIThBUHY6GR1fZQoaAZoCWgPQwi862zIP7FtQJSGlFKUaBVNGQFoFkdAhOFNDUmUn3V9lChoBmgJaA9DCI/k8h9SC3BAlIaUUpRoFU1PAWgWR0CE5CPz4DcNdX2UKGgGaAloD0MI7l7ukyNxcECUhpRSlGgVTRQBaBZHQITo7bzshPl1fZQoaAZoCWgPQwgSpb3Bl6FxQJSGlFKUaBVNXgFoFkdAhO1xnezlcXV9lChoBmgJaA9DCPrwLEGG9HFAlIaUUpRoFU0rAWgWR0CE7XJcPe54dX2UKGgGaAloD0MIttsuNFcmcECUhpRSlGgVTSwBaBZHQITu3A/LTx51fZQoaAZoCWgPQwh9W7BUl2hrQJSGlFKUaBVNIwFoFkdAhPBUjkdWAHV9lChoBmgJaA9DCMVXO4qzGHJAlIaUUpRoFU0ZAWgWR0CE8Q2Hck+pdX2UKGgGaAloD0MIbOun/+zScECUhpRSlGgVTQ4BaBZHQITxdjurp7l1fZQoaAZoCWgPQwgS9u0kYt9xQJSGlFKUaBVNFgFoFkdAhPWDEehf0HV9lChoBmgJaA9DCBctQNvq825AlIaUUpRoFU1RAWgWR0CE9vDl5nlGdX2UKGgGaAloD0MIkKSkhyHjbECUhpRSlGgVTRwBaBZHQIT5ZdpqREF1fZQoaAZoCWgPQwgy6ITQQV1sQJSGlFKUaBVNIwFoFkdAhPlhE0BOpXV9lChoBmgJaA9DCIWVCiqqUnBAlIaUUpRoFU04AWgWR0CE+ik5ZKWcdX2UKGgGaAloD0MIBDxp4XJNcUCUhpRSlGgVTRgDaBZHQIT8vqmj0th1fZQoaAZoCWgPQwjxL4LGDI9yQJSGlFKUaBVNLwFoFkdAhP49kBjnWHV9lChoBmgJaA9DCPRvl/26XnFAlIaUUpRoFU1yAWgWR0CFADv+fh/BdX2UKGgGaAloD0MIdCSX/5CSbUCUhpRSlGgVTfYBaBZHQIUBYarFOwh1fZQoaAZoCWgPQwhmFTYDXGhrQJSGlFKUaBVNEAFoFkdAhQWhYV6/qXV9lChoBmgJaA9DCOIDO/7L7HBAlIaUUpRoFUv2aBZHQIUF4zWPLgZ1fZQoaAZoCWgPQwi06J0KuK9xQJSGlFKUaBVNVgFoFkdAhQZOwHJLd3V9lChoBmgJaA9DCAuW6gIeunBAlIaUUpRoFU06AWgWR0CFB9KqXF98dX2UKGgGaAloD0MIBD3UtiEwcUCUhpRSlGgVTRwBaBZHQIUH7gTAWSF1fZQoaAZoCWgPQwi3J0hs9/JuQJSGlFKUaBVNRwFoFkdAhQjJNCZ4OnV9lChoBmgJaA9DCABXsmMj5G9AlIaUUpRoFU0nAWgWR0CFCUTfzjFRdX2UKGgGaAloD0MIMC3qk9xMbkCUhpRSlGgVTSsBaBZHQIUOdD2Jzkp1fZQoaAZoCWgPQwiY32kyo2NwQJSGlFKUaBVNZwFoFkdAhRJkNWluWXV9lChoBmgJaA9DCBVT6SccwXBAlIaUUpRoFU0/AWgWR0CFErMINVindX2UKGgGaAloD0MIDW5rC89IcECUhpRSlGgVTVsBaBZHQIUVNtuUD+11fZQoaAZoCWgPQwjOUUfHVbVvQJSGlFKUaBVNNwFoFkdAhRXntOVPe3V9lChoBmgJaA9DCFTle0bignBAlIaUUpRoFU0KAWgWR0CFF0qR2bG4dX2UKGgGaAloD0MIc/G3PUFzbECUhpRSlGgVTW4BaBZHQIUXndj5Kvp1fZQoaAZoCWgPQwhNLsbA+kZwQJSGlFKUaBVNAAFoFkdAhRqVWsA/93V9lChoBmgJaA9DCAlupGyRVnBAlIaUUpRoFU1GAWgWR0CFGv20Re1KdX2UKGgGaAloD0MIQwOxbGbHcECUhpRSlGgVTSoBaBZHQIUedtbcGkh1fZQoaAZoCWgPQwge3QiLSiByQJSGlFKUaBVNJAFoFkdAhSANKh+OO3V9lChoBmgJaA9DCBsPtthtxnJAlIaUUpRoFU0tAWgWR0CFIfWuoxYadX2UKGgGaAloD0MIahSSzKoKcUCUhpRSlGgVTUMBaBZHQIUi2tfXwsp1fZQoaAZoCWgPQwhYqgt4maNxQJSGlFKUaBVNgAFoFkdAhSrAntv4unV9lChoBmgJaA9DCL0d4bRggnBAlIaUUpRoFU0LAmgWR0CFKrwrlNlAdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 1,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/TMzMzMzMzhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2bb8322c4486e1762e66b8b1faa343288b3cb8a07c2b5f7cbc365225be4ca22
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55c39b5517b903b54e0a774b46305fdc721c7c95af223949b3951f1b7aa111c2
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c7c6ae920bb06aacfcf2004fe66b5ba73ac7501b4d42b1bdf218572ed394f13
|
3 |
+
size 195891
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 242.76562900698804, "std_reward": 18.064447106994603, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T01:58:04.203789"}
|