File size: 5,395 Bytes
32b542e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
_BASE_: "base_model_bert_l12_h192.yaml"
SHARED_TARGETS:
-
NAME: 'Vocab_Word'
SHARED_TARGETS_CFG:
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
DISTRIBUTED: True
TASKS:
-
NAME: mscoco_retrieve
DATASETS:
TRAIN: 'ImageTextPairDataset'
TEST: 'ImageTextPairDataset'
TASK_TYPE: 'image_retrieval'
DATASET_NAME: 'MSCOCO'
DATALOADER:
TRAIN_BATCH_SIZE: 100
TEST_BATCH_SIZE: 32
NUM_WORKERS: 1
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
S3_PATH: 's3://coco/'
SEQ_PER_SAMPLE: 1
CACHE_MODE: True
CIRCULAR_CACHE_MODE: False
ZIP_MODE: False
CACHE_ORIGIN_IMAGE: False
RANDOM_CAPTION: False
AS_NUMPY_AS_POSSIBLE: False
SAMPLING_WEIGHT: 1.0
TRANSFORM: 'clip_transforms'
MODEL:
MAX_SEQ_LEN: 50
TEMP_NAME: logit_scale_retrieve
LOSSES:
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
LABELSMOOTHING: 0.1
LOSS_WEIGHT: 1.0
REDUCTION: 'mean'
INFERENCE:
VOCAB: 'CLIP'
ID_KEY: 'image_id'
VALUE: 'caption'
NAME: 'RetrievalEvaler'
VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
GENERATION_MODE: False
-
NAME: mscoco_caption
DATASETS:
TRAIN: 'ImageTextPairDataset'
# VAL: 'ImageTextPairDataset'
TEST: 'ImageTextPairDataset'
TASK_TYPE: 'image_caption'
DATASET_NAME: 'MSCOCO'
TARGET_SET: ['Vocab_Word']
DATALOADER:
TRAIN_BATCH_SIZE: 300
TEST_BATCH_SIZE: 32
NUM_WORKERS: 4
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
S3_PATH: 's3://coco/'
SEQ_PER_SAMPLE: 1
CACHE_MODE: True
CIRCULAR_CACHE_MODE: False
ZIP_MODE: False
CACHE_ORIGIN_IMAGE: False
RANDOM_CAPTION: False
AS_NUMPY_AS_POSSIBLE: False
SAMPLING_WEIGHT: 0.3817
TRANSFORM: 'clip_transforms'
RANDOM_MASK: True
MODEL:
MAX_SEQ_LEN: 50
EVAL_MAX_SEQ_LEN: 21
TEMP_NAME: logit_scale_caption
LOSSES:
NAMES: ['CrossEntropy', 'Accuracy']
LOSS_WEIGHT: 0.33333
REDUCTION: 'mean'
DECODE_STRATEGY:
NAME: 'CaptionBeamSearcherV3'
BEAM_SIZE: 2
# LEN_PENALTY: 1.0
INFERENCE:
NAME: 'COCOEvaler'
VOCAB: 'CLIP'
ID_KEY: 'image_id'
VALUE: 'caption'
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
GENERATION_MODE: True
ENGINE:
NAME: 'UnifiedTrainer'
MODEL:
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
ENCODER: 'UnifiedBertEncoder'
IN_TUNING: True # use IN1k instead of 22k
SHARE_LAYERNORM: True
BERT:
NORMALIZE_DECISION: "BERTPre"
DROP_PATH_PROB: 0.0
DROP_PATH_PROB_FIXED: True
MODEL_EMA: False
MODEL_EMA_DECAY: 0.9999
MAEParamsInit: True
POSEMBEDFIX: True
IMG_INPUT_SIZE: 224
PATCH_SIZE: 16
LAYER_SCALE: True
LAYER_SCALE_INIT: 1e-3
DATALOADER:
USE_WEIGHTED_SAMPLER: True
UNIFIED_DATASET: True
NUM_WORKERS: 32
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
####################################### Optimizer #######################################
SOLVER:
NAME: 'Adam'
TORCH_OPTIMIZER: True
PARAMS_SEPERATE: True
# PARAMS_GROUP: True
# EPOCH: 1
MAX_ITER: 150000
CHECKPOINT_PERIOD: 5000
EVAL_PERIOD: 500000
BASE_LR: 0.001
BIAS_LR_FACTOR: 1.0
WEIGHT_DECAY: 0.05
WEIGHT_DECAY_NORM: 0.0
WEIGHT_DECAY_BIAS: 0.0
WEIGHT_DECAY_EMBEDDING: 0.0
MOMENTUM: 0.9
DAMPENING: 0.0
NESTEROV: 0.0
BETAS: [0.9, 0.95]
EPS: 1e-6
GRAD_CLIP: 0.1
GRAD_CLIP_TYPE: 'norm'
ACCUM_ITER: 0
AMP_FP16: True
APEX_FP16: False # dangerous
WRITE_PERIOD: 50
MIN_LOSS_SCLE: 2048.0
# BF16: False # True
# ZEROSTAGE: 2
LOSS_SCALE_WINDOW: 200
####################################### lr scheduler #######################################
LR_SCHEDULER:
NAME: 'WarmupCosine'
WARMUP: 5000
MIN_LR: 0.000001
####################################### evaluation #######################################
INFERENCE:
VOCAB: 'CLIP'
ITER_BASED: True
find_unused_parameters: true
# ENCODERS:
# -
# NAME: VisualEncoder
# TYPE: VisualEncoder
# DROP_PATH_PROB: 0.0
# HIDDEN_SIZE: 192
# HIDDEN_DROPOUT_PROB: 0.
# HIDDEN_ACT: "gelu"
# NUM_ATTENTION_HEADS: 3
# INTERMEDIATE_SIZE: 768
# INTERMEDIATE_DROP: 0.
# FFN_DROPOUT_PROB: 0.
# ATTENTION_PROBS_DROPOUT_PROB: 0.
# NUM_HIDDEN_LAYERS: 6
# NUM_GENERATION_LAYERS: 0
# DROP_PATH_PROB_FIXED: True
# -
# NAME: TextEncoder
# TYPE: TextEncoder
# DROP_PATH_PROB: 0.0
# HIDDEN_SIZE: 192
# HIDDEN_DROPOUT_PROB: 0.
# HIDDEN_ACT: "gelu"
# NUM_ATTENTION_HEADS: 3
# INTERMEDIATE_SIZE: 768
# INTERMEDIATE_DROP: 0.
# FFN_DROPOUT_PROB: 0.
# ATTENTION_PROBS_DROPOUT_PROB: 0.
# NUM_HIDDEN_LAYERS: 6
# NUM_GENERATION_LAYERS: 0
# DROP_PATH_PROB_FIXED: True
|