File size: 5,486 Bytes
32b542e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
_BASE_: "base_model_bert_l12_h768.yaml"

SHARED_TARGETS:



  -
    NAME: 'Vocab_Word'
    SHARED_TARGETS_CFG:
      FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
      DISTRIBUTED: True

TASKS:

  
  
  # -
  #   NAME: mscoco_retrieve
  #   DATASETS:
  #     TRAIN: 'ImageTextPairDataset'
  #     TEST: 'ImageTextPairDataset'
  #     TASK_TYPE: 'image_retrieval'
  #     DATASET_NAME: 'MSCOCO'
  #   DATALOADER:
  #     TRAIN_BATCH_SIZE: 256
  #     TEST_BATCH_SIZE: 64
  #     NUM_WORKERS: 1
  #     FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
  #     ANNO_FOLDER:  'open_source_dataset/mscoco_dataset/new_annotations'
  #     S3_PATH: 's3://coco/'
  #     SEQ_PER_SAMPLE:  1
  #     CACHE_MODE: True
  #     CIRCULAR_CACHE_MODE: False
  #     ZIP_MODE: False
  #     CACHE_ORIGIN_IMAGE: False
  #     RANDOM_CAPTION: False
  #     AS_NUMPY_AS_POSSIBLE: False
  #     SAMPLING_WEIGHT: 0.5
  #     TRANSFORM: 'clip_transforms'
  #   MODEL:
  #     MAX_SEQ_LEN: 30
  #     TEMP_NAME: logit_scale_retrieve
  #   LOSSES:
  #     NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
  #     LABELSMOOTHING: 0.1
  #     LOSS_WEIGHT: 0.5
  #     REDUCTION: 'mean'
  #   INFERENCE:
  #     VOCAB: 'CLIP'
  #     ID_KEY: 'image_id'
  #     VALUE: 'caption'
  #     NAME: 'RetrievalEvaler'
  #     VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
  #     TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
  #     GENERATION_MODE: False

  -
    NAME: mscoco_caption
    DATASETS:
      TRAIN: 'ImageTextPairDataset'
      # VAL: 'ImageTextPairDataset'
      TEST: 'ImageTextPairDataset'
      TASK_TYPE: 'image_caption'
      DATASET_NAME: 'MSCOCO'
      TARGET_SET: ['Vocab_Word']
    DATALOADER:
      TRAIN_BATCH_SIZE: 200
      TEST_BATCH_SIZE: 2
      NUM_WORKERS: 4
      FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
      ANNO_FOLDER:  'open_source_dataset/mscoco_dataset/new_annotations'
      S3_PATH: 's3://coco/'
      SEQ_PER_SAMPLE:  1
      CACHE_MODE: True
      CIRCULAR_CACHE_MODE: False
      ZIP_MODE: False
      CACHE_ORIGIN_IMAGE: False
      RANDOM_CAPTION: False
      AS_NUMPY_AS_POSSIBLE: False
      SAMPLING_WEIGHT: 0.5
      TRANSFORM: 'clip_transforms'
      RANDOM_MASK: True
    MODEL:
      MAX_SEQ_LEN: 30
      EVAL_MAX_SEQ_LEN: 21
      TEMP_NAME: logit_scale_caption
    LOSSES:
      NAMES: ['CrossEntropy', 'Accuracy']
      LOSS_WEIGHT: 0.5
      REDUCTION: 'mean'
    DECODE_STRATEGY:
      NAME: 'CaptionBeamSearcherV3'
      BEAM_SIZE: 2
      # LEN_PENALTY: 1.0
    INFERENCE:
      NAME: 'COCOEvaler'
      VOCAB: 'CLIP'
      ID_KEY: 'image_id'
      VALUE: 'caption'
      VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
      TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
      GENERATION_MODE: True




ENGINE:
  NAME: 'UnifiedTrainer'
 
MODEL:
  META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
  ENCODER: 'UnifiedBertEncoder'

  IN_TUNING: True # use IN1k instead of 22k
  SHARE_LAYERNORM: True
  BERT:
    NORMALIZE_DECISION: "BERTPre" 
    DROP_PATH_PROB: 0.1
    DROP_PATH_PROB_FIXED: True

    UNIFY_QKV: True
  
  MODEL_EMA: False
  MODEL_EMA_DECAY: 0.9999

  MAEParamsInit: True
  POSEMBEDFIX: True


  IMG_INPUT_SIZE: 224
  PATCH_SIZE: 16

  LAYER_SCALE: True 
  LAYER_SCALE_INIT: 1e-3


DATALOADER:
  USE_WEIGHTED_SAMPLER: True
  UNIFIED_DATASET: True 
  NUM_WORKERS: 16

  PADDING_TO_MAX: False # True for debugging or token moe with distributed moe 


  
####################################### Optimizer #######################################
SOLVER:
  NAME: 'Adam'
  TORCH_OPTIMIZER: True
  PARAMS_SEPERATE: True
  # PARAMS_GROUP: True
  # EPOCH: 1
  MAX_ITER: 450000
  CHECKPOINT_PERIOD: 50000
  EVAL_PERIOD: 500000
  BASE_LR: 0.001
  BIAS_LR_FACTOR: 1.0
  WEIGHT_DECAY: 0.05
  WEIGHT_DECAY_NORM: 0.0
  WEIGHT_DECAY_BIAS: 0.0
  WEIGHT_DECAY_EMBEDDING: 0.0
  MOMENTUM: 0.9
  DAMPENING: 0.0
  NESTEROV: 0.0
  BETAS: [0.9, 0.95]
  EPS: 1e-6
  GRAD_CLIP: 0.1
  GRAD_CLIP_TYPE: 'norm'
  ACCUM_ITER: 0
  AMP_FP16: True
  APEX_FP16: False # dangerous

  WRITE_PERIOD: 50
  MIN_LOSS_SCLE: 2048.0
  # BF16: False # True
  # ZEROSTAGE: 2

  LOSS_SCALE_WINDOW: 200





  
####################################### lr scheduler ####################################### 
LR_SCHEDULER:
  NAME: 'WarmupCosine'
  WARMUP: 20000
  MIN_LR: 0.000001




####################################### evaluation ####################################### 
INFERENCE:

  VOCAB: 'CLIP'
  ITER_BASED: True


find_unused_parameters: true

# ENCODERS:
#   -
#     NAME: VisualEncoder
#     TYPE: VisualEncoder
#     DROP_PATH_PROB: 0.0
#     HIDDEN_SIZE: 192
#     HIDDEN_DROPOUT_PROB: 0.
#     HIDDEN_ACT: "gelu"
#     NUM_ATTENTION_HEADS: 3
#     INTERMEDIATE_SIZE: 768
#     INTERMEDIATE_DROP: 0.
#     FFN_DROPOUT_PROB: 0.
#     ATTENTION_PROBS_DROPOUT_PROB: 0.
#     NUM_HIDDEN_LAYERS: 6
#     NUM_GENERATION_LAYERS: 0
#     DROP_PATH_PROB_FIXED: True

#   -
#     NAME: TextEncoder
#     TYPE: TextEncoder
#     DROP_PATH_PROB: 0.0
#     HIDDEN_SIZE: 192
#     HIDDEN_DROPOUT_PROB: 0.
#     HIDDEN_ACT: "gelu"
#     NUM_ATTENTION_HEADS: 3
#     INTERMEDIATE_SIZE: 768
#     INTERMEDIATE_DROP: 0.
#     FFN_DROPOUT_PROB: 0.
#     ATTENTION_PROBS_DROPOUT_PROB: 0.
#     NUM_HIDDEN_LAYERS: 6
#     NUM_GENERATION_LAYERS: 0
#     DROP_PATH_PROB_FIXED: True