_BASE_: "base_model_bert_l12_h192.yaml" SHARED_TARGETS: # - # NAME: 'ImageNet1k' # SHARED_TARGETS_CFG: # FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl' # DISTRIBUTED: False - NAME: 'Vocab_Word' SHARED_TARGETS_CFG: FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl' DISTRIBUTED: True # - # NAME: 'Kinetics400' # SHARED_TARGETS_CFG: # FILE_PATH: 'open_source_dataset/k400_class_name_CLIP_with_endoftext.pkl' # DISTRIBUTED: False TASKS: # - # NAME: imagenet # DATASETS: # TRAIN: 'ImageNetDataset' # VAL: 'ImageNetDataset' # TASK_TYPE: 'image_classification' # DATASET_NAME: 'ImageNet1k' # TARGET_SET: ['ImageNet1k'] # DATALOADER: # TRAIN_BATCH_SIZE: 720 # # TEST_BATCH_SIZE: 2 # NUM_WORKERS: 4 # FEATS_FOLDER: 'cluster2:s3://imagenet' # ANNO_FOLDER: 'open_source_dataset/imagenet/meta' # SAMPLING_WEIGHT: 2.5 # CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl' # MIXUP: 0.8 # CUTMIX: 1.0 # MIXUP_PROB: 1.0 # MIXUP_SWITCH_PROB: 0.5 # MIXUP_MODE: 'batch' # MIXUP_LABEL_SMOOTHING: 0.1 # MODEL: # MAX_SEQ_LEN: -1 # LABELS_NUM: 1000 # TEMP_NAME: logit_scale_img_cls # LOSSES: # NAMES: ['SoftTargetCrossEntropy', 'Accuracy'] # LOSS_WEIGHT: 1.0 # REDUCTION: 'mean' # # LOSS_FP32: True # INFERENCE: # NAME: 'ImageNetEvaler' # ID_KEY: 'image_id' # VALUE: 'cls_logits' # VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt' # TEST_ANNFILE: '' # GENERATION_MODE: False # - # NAME: K400_retrieve # DATASETS: # TRAIN: 'VideoDataSet' # VAL: 'VideoDataSet' # TASK_TYPE: 'video_classification' # DATASET_NAME: 'K400' # TARGET_SET: ['Kinetics400'] # DATALOADER: # TRAIN_BATCH_SIZE: 12 # 256 # TEST_BATCH_SIZE: 4 # debug # NUM_WORKERS: 4 # debug 4 # FEATS_FOLDER: 'open_source_dataset/K400_official' # ANNO_FOLDER: 'open_source_dataset/K400_official' # S3_PATH: 's3://K400/' # FRAMES_PER_CLIP: 8 # STRIDE: 32 # FILE_EXTENSION: '' # ANNO_FILE: 'annotation.json' # TIMESFORMER_AUG: True # SAMPLING_WEIGHT: 1.0 # MODEL: # MAX_SEQ_LEN: -1 # TEMP_NAME: logit_scale_video_cls # LOSSES: # NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy'] # LABELSMOOTHING: 0.1 # LOSS_WEIGHT: 1.0 # INFERENCE: # NAME: 'MiTEvaler' # ID_KEY: 'video_name' # VALUE: 'label' # VAL_ANNFILE: 'open_source_dataset/K400_official/annotation.json' # TEST_ANNFILE: '' # GENERATION_MODE: False # NUM_VIEWS: 1 # - # NAME: bookswiki_pretrain # DATASETS: # TRAIN: 'GeneralCorpusDataset' # TASK_TYPE: 'text_mlm' # DATASET_NAME: 'BooksWiki' # TARGET_SET: ['Vocab_Word'] # VERSION: 'v2' # DATALOADER: # TRAIN_BATCH_SIZE: 512 # TEST_BATCH_SIZE: 32 # NUM_WORKERS: 2 # ANNO_FOLDER: 'open_source_dataset/text_corpus' # 'open_source_dataset/bert_pretrain_data/bookswiki' # # ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki' # SEQ_PER_SAMPLE: 1 # SAMPLER: NodeDistributed # CACHE_MODE: True # SEQ_PER_SAMPLE: 128 # MIN_SEQ_PER_SAMPLE: 128 # APPEND_EOS: True # ONE_STREAM: False # SAMPLING_WEIGHT: 3.5 # RANDOM_MASK: True # MODEL: # MAX_SEQ_LEN: 128 # TEMP_NAME: logit_scale_text_mlm # LOSSES: # NAMES: ['CrossEntropy', 'Accuracy'] # LOSS_WEIGHT: 0.33333 # REDUCTION: 'mean' # INFERENCE: # VOCAB: 'CLIP' # GENERATION_MODE: False # - # NAME: mscoco_retrieve # DATASETS: # TRAIN: 'ImageTextPairDataset' # TEST: 'ImageTextPairDataset' # TASK_TYPE: 'image_retrieval' # DATASET_NAME: 'MSCOCO' # DATALOADER: # TRAIN_BATCH_SIZE: 100 # TEST_BATCH_SIZE: 32 # NUM_WORKERS: 1 # FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin' # ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations' # S3_PATH: 's3://coco/' # SEQ_PER_SAMPLE: 1 # CACHE_MODE: True # CIRCULAR_CACHE_MODE: False # ZIP_MODE: False # CACHE_ORIGIN_IMAGE: False # RANDOM_CAPTION: False # AS_NUMPY_AS_POSSIBLE: False # SAMPLING_WEIGHT: 1.0 # TRANSFORM: 'clip_transforms' # MODEL: # MAX_SEQ_LEN: 50 # TEMP_NAME: logit_scale_retrieve # LOSSES: # NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy'] # LABELSMOOTHING: 0.1 # LOSS_WEIGHT: 1.0 # REDUCTION: 'mean' # INFERENCE: # VOCAB: 'CLIP' # ID_KEY: 'image_id' # VALUE: 'caption' # NAME: 'RetrievalEvaler' # VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline' # TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline' # GENERATION_MODE: False ########## Image Captioning ########### # - # NAME: cc12m_caption # DATASETS: # TRAIN: 'ImageTextPairDataset' # TASK_TYPE: 'image_caption' # DATASET_NAME: 'CC12M' # TARGET_SET: ['Vocab_Word'] # DATALOADER: # TRAIN_BATCH_SIZE: 300 # TEST_BATCH_SIZE: 32 # NUM_WORKERS: 2 # S3_ANNO_FOLDER: 's3://cc12m/' # ANNO_FOLDER: 'open_source_dataset/c12m/' # ANNO_FILENAME: 'train_available.json' # FEATS_FOLDER: 'open_source_dataset/c12m/' # S3_PATH: 's3://cc12m/' # SEQ_PER_SAMPLE: 1 # SAMPLER: NodeDistributed # CACHE_MODE: True # CIRCULAR_CACHE_MODE: False # ZIP_MODE: False # CACHE_ORIGIN_IMAGE: False # RANDOM_CAPTION: False # AS_NUMPY_AS_POSSIBLE: False # SAMPLING_WEIGHT: 1.6889 # TRANSFORM: 'clip_transforms' # MODEL: # MAX_SEQ_LEN: 50 # TEMP_NAME: logit_scale_caption # LOSSES: # NAMES: ['CrossEntropy', 'Accuracy'] # LOSS_WEIGHT: 0.33333 # REDUCTION: 'mean' # INFERENCE: # VOCAB: 'CLIP' # GENERATION_MODE: False # - # NAME: cc3m_caption # DATASETS: # TRAIN: 'ImageTextPairDataset' # TASK_TYPE: 'image_caption' # DATASET_NAME: 'CC3M' # TARGET_SET: ['Vocab_Word'] # DATALOADER: # TRAIN_BATCH_SIZE: 300 # TEST_BATCH_SIZE: 32 # NUM_WORKERS: 2 # ANNO_FOLDER: 's3://cc3m/' # ANNO_FILENAME: 'train_spacy.json' # FEATS_FOLDER: 'open_source_dataset/cc3m/' # S3_PATH: 's3://cc3m/' # SEQ_PER_SAMPLE: 1 # SAMPLER: NodeDistributed # CACHE_MODE: True # CIRCULAR_CACHE_MODE: False # ZIP_MODE: False # CACHE_ORIGIN_IMAGE: False # RANDOM_CAPTION: False # AS_NUMPY_AS_POSSIBLE: False # SAMPLING_WEIGHT: 0.8780 # TRANSFORM: 'clip_transforms' # MODEL: # MAX_SEQ_LEN: 50 # TEMP_NAME: logit_scale_caption # LOSSES: # NAMES: ['CrossEntropy', 'Accuracy'] # LOSS_WEIGHT: 0.33333 # REDUCTION: 'mean' # INFERENCE: # VOCAB: 'CLIP' # GENERATION_MODE: False # - # NAME: vg_caption # DATASETS: # TRAIN: 'ImageTextPairDataset' # TASK_TYPE: 'image_caption' # DATASET_NAME: 'VG' # TARGET_SET: ['Vocab_Word'] # DATALOADER: # TRAIN_BATCH_SIZE: 300 # TEST_BATCH_SIZE: 32 # NUM_WORKERS: 2 # FEATS_FOLDER: 'open_source_dataset/visual_genome/images' # ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations' # S3_PATH: 's3://visual_genome/images' # ANNO_FILENAME: 'vg_captions_128filter.json' # SEQ_PER_SAMPLE: 1 # CACHE_MODE: True # CIRCULAR_CACHE_MODE: False # ZIP_MODE: False # CACHE_ORIGIN_IMAGE: False # RANDOM_CAPTION: False # AS_NUMPY_AS_POSSIBLE: False # SAMPLING_WEIGHT: 0.5895 # TRANSFORM: 'clip_transforms' # MODEL: # MAX_SEQ_LEN: 30 # TEMP_NAME: logit_scale_caption # LOSSES: # NAMES: ['CrossEntropy', 'Accuracy'] # LOSS_WEIGHT: 0.33333 # REDUCTION: 'mean' # INFERENCE: # VOCAB: 'CLIP' # GENERATION_MODE: True - NAME: mscoco_caption DATASETS: TRAIN: 'ImageTextPairDataset' # VAL: 'ImageTextPairDataset' TEST: 'ImageTextPairDataset' TASK_TYPE: 'image_caption' DATASET_NAME: 'MSCOCO' TARGET_SET: ['Vocab_Word'] DATALOADER: TRAIN_BATCH_SIZE: 32 TEST_BATCH_SIZE: 2 NUM_WORKERS: 4 FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin' ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations' S3_PATH: 's3://coco/' SEQ_PER_SAMPLE: 1 CACHE_MODE: True CIRCULAR_CACHE_MODE: False ZIP_MODE: False CACHE_ORIGIN_IMAGE: False RANDOM_CAPTION: False AS_NUMPY_AS_POSSIBLE: False SAMPLING_WEIGHT: 0.3817 TRANSFORM: 'clip_transforms' RANDOM_MASK: True MODEL: MAX_SEQ_LEN: 50 EVAL_MAX_SEQ_LEN: 21 TEMP_NAME: logit_scale_caption LOSSES: NAMES: ['CrossEntropy', 'Accuracy'] LOSS_WEIGHT: 0.33333 REDUCTION: 'mean' DECODE_STRATEGY: NAME: 'CaptionBeamSearcherV3' BEAM_SIZE: 2 # LEN_PENALTY: 2.0 INFERENCE: NAME: 'COCOEvaler' VOCAB: 'CLIP' ID_KEY: 'image_id' VALUE: 'caption' VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json' TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json' GENERATION_MODE: True # - # NAME: sbu_caption # DATASETS: # TRAIN: 'ImageTextPairDataset' # TASK_TYPE: 'image_caption' # DATASET_NAME: 'SBU' # TARGET_SET: ['Vocab_Word'] # DATALOADER: # TRAIN_BATCH_SIZE: 300 # TEST_BATCH_SIZE: 32 # NUM_WORKERS: 1 # S3_ANNO_FOLDER: 's3://SBU/annotations' # ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations' # ANNO_FILENAME: 'subcaption.json' # FEATS_FOLDER: 'open_source_dataset/sbucaption/' # S3_PATH: 's3://SBU/images' # SEQ_PER_SAMPLE: 1 # SAMPLER: NodeDistributed # CACHE_MODE: True # CIRCULAR_CACHE_MODE: False # ZIP_MODE: False # CACHE_ORIGIN_IMAGE: False # RANDOM_CAPTION: False # AS_NUMPY_AS_POSSIBLE: False # SAMPLING_WEIGHT: 0.4618 # TRANSFORM: 'clip_transforms' # MODEL: # MAX_SEQ_LEN: 50 # TEMP_NAME: logit_scale_caption # LOSSES: # NAMES: ['CrossEntropy', 'Accuracy'] # LOSS_WEIGHT: 0.33333 # REDUCTION: 'mean' # INFERENCE: # VOCAB: 'CLIP' # GENERATION_MODE: False ENGINE: NAME: 'UnifiedTrainer' MODEL: META_ARCHITECTURE: 'MultiTaskTransformerEncoder' ENCODER: 'UnifiedBertEncoder' IN_TUNING: True # use IN1k instead of 22k SHARE_LAYERNORM: True BERT: NORMALIZE_DECISION: "BERTPre" DROP_PATH_PROB: 0.0 DROP_PATH_PROB_FIXED: True MODEL_EMA: False MODEL_EMA_DECAY: 0.9999 MAEParamsInit: True POSEMBEDFIX: True IMG_INPUT_SIZE: 224 PATCH_SIZE: 16 LAYER_SCALE: True LAYER_SCALE_INIT: 1e-3 LAYER_SCALE_FP32: True GATE_FP32: False TAG_TRANSFORM_FP32: False DATALOADER: USE_WEIGHTED_SAMPLER: True UNIFIED_DATASET: True NUM_WORKERS: 32 STRATEGY: 'turn' PADDING_TO_MAX: False # True for debugging or token moe with distributed moe ####################################### Optimizer ####################################### SOLVER: NAME: 'Adam' TORCH_OPTIMIZER: True PARAMS_SEPERATE: True # PARAMS_GROUP: True # EPOCH: 1 MAX_ITER: 150000 CHECKPOINT_PERIOD: 5000 EVAL_PERIOD: 500000 BASE_LR: 0.001 BIAS_LR_FACTOR: 1.0 WEIGHT_DECAY: 0.05 WEIGHT_DECAY_NORM: 0.0 WEIGHT_DECAY_BIAS: 0.0 WEIGHT_DECAY_EMBEDDING: 0.0 MOMENTUM: 0.9 DAMPENING: 0.0 NESTEROV: 0.0 BETAS: [0.9, 0.95] EPS: 1e-6 GRAD_CLIP: 0.1 GRAD_CLIP_TYPE: 'norm' ACCUM_ITER: 0 AMP_FP16: True APEX_FP16: False # dangerous WRITE_PERIOD: 50 MIN_LOSS_SCLE: 2048.0 # BF16: False # True # ZEROSTAGE: 2 LOSS_SCALE_WINDOW: 200 FORCE_SOFTMAX_FP16: True FORCE_LN_FP16: True FORCE_NORM_FP16: True # FORCE_TEMP_FP16: True FORCE_EMBED_FP16: True ####################################### lr scheduler ####################################### LR_SCHEDULER: NAME: 'WarmupCosine' WARMUP: 5000 MIN_LR: 0.000001 ####################################### evaluation ####################################### INFERENCE: VOCAB: 'CLIP' ITER_BASED: True find_unused_parameters: true # ENCODERS: # - # NAME: VisualEncoder # TYPE: VisualEncoder # DROP_PATH_PROB: 0.0 # HIDDEN_SIZE: 192 # HIDDEN_DROPOUT_PROB: 0. # HIDDEN_ACT: "gelu" # NUM_ATTENTION_HEADS: 3 # INTERMEDIATE_SIZE: 768 # INTERMEDIATE_DROP: 0. # FFN_DROPOUT_PROB: 0. # ATTENTION_PROBS_DROPOUT_PROB: 0. # NUM_HIDDEN_LAYERS: 6 # NUM_GENERATION_LAYERS: 0 # DROP_PATH_PROB_FIXED: True # - # NAME: TextEncoder # TYPE: TextEncoder # DROP_PATH_PROB: 0.0 # HIDDEN_SIZE: 192 # HIDDEN_DROPOUT_PROB: 0. # HIDDEN_ACT: "gelu" # NUM_ATTENTION_HEADS: 3 # INTERMEDIATE_SIZE: 768 # INTERMEDIATE_DROP: 0. # FFN_DROPOUT_PROB: 0. # ATTENTION_PROBS_DROPOUT_PROB: 0. # NUM_HIDDEN_LAYERS: 6 # NUM_GENERATION_LAYERS: 0 # DROP_PATH_PROB_FIXED: True MOE: MOE: True MOE_TYPE: 'attribute' TAG_Transform: True ATTRIBUTE_LENGTH: 8 EP_WORLD_SIZE: 1 # tag moe only NUM_EXPERTS: 8 TOP_K: 2 CAPACITY_FACTOR: 3.0 EVAL_MIN_CAPACITY: 4.0 MIN_CAPACITY: 4 NOISY_GATE_POLICY: 'vmoe' MOE_PARAM_GROUP: True MOE_EXPERT_TYPE: 'FFN,SA' SA_LINEAR_OUT_MOE: True MOE_EXPERT_LOCATION: 'all' # 'odd' # MOE_LAYER_START_IDX: 3 # MOE_LAYER_END_IDX: 21 # MOE_LAYER_START_IDX: 18 # MOE_LAYER_END_IDX: 12 BATCH_PRIO: True USE_TUTEL: True FFN_SHARE_GATE_DECISION: True