_BASE_: "base_model_bert_l12_h768.yaml" SHARED_TARGETS: - NAME: 'ImageNet1k' SHARED_TARGETS_CFG: FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl' DISTRIBUTED: False # - # NAME: 'Vocab_Word' # SHARED_TARGETS_CFG: # FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl' # DISTRIBUTED: True TASKS: - NAME: imagenet DATASETS: TRAIN: 'ImageNetDataset' VAL: 'ImageNetDataset' TASK_TYPE: 'image_classification' DATASET_NAME: 'ImageNet1k' TARGET_SET: ['ImageNet1k'] DATALOADER: TRAIN_BATCH_SIZE: 128 TEST_BATCH_SIZE: 128 NUM_WORKERS: 4 # will be used as numworker for testing loader FEATS_FOLDER: 'open_source_dataset/imagenet' S3_PATH: 'cluster2:s3://imagenet' ANNO_FOLDER: 'open_source_dataset/imagenet/meta' SAMPLING_WEIGHT: 1.0 CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl' MIXUP: 0.8 CUTMIX: 1.0 MIXUP_PROB: 1.0 MIXUP_SWITCH_PROB: 0.5 MIXUP_MODE: 'batch' MIXUP_LABEL_SMOOTHING: 0.1 MODEL: MAX_SEQ_LEN: -1 LABELS_NUM: 1000 TEMP_NAME: logit_scale_img_cls LOSSES: NAMES: ['SoftTargetCrossEntropy', 'Accuracy'] LOSS_WEIGHT: 1.0 REDUCTION: 'mean' # LOSS_FP32: True INFERENCE: NAME: 'ImageNetEvaler' ID_KEY: 'image_id' VALUE: 'cls_logits' VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt' TEST_ANNFILE: '' GENERATION_MODE: False # - # NAME: bookswiki_pretrain # DATASETS: # TRAIN: 'GeneralCorpusDataset' # TASK_TYPE: 'text_mlm' # DATASET_NAME: 'BooksWiki' # TARGET_SET: ['Vocab_Word'] # DATALOADER: # TRAIN_BATCH_SIZE: 128 # TEST_BATCH_SIZE: 32 # NUM_WORKERS: 2 # ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki' # # ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki' # SEQ_PER_SAMPLE: 1 # SAMPLER: NodeDistributed # CACHE_MODE: True # SEQ_PER_SAMPLE: 128 # MIN_SEQ_PER_SAMPLE: 128 # APPEND_EOS: True # ONE_STREAM: False # SAMPLING_WEIGHT: 1.0 # RANDOM_MASK: True # MODEL: # MAX_SEQ_LEN: 128 # TEMP_NAME: logit_scale_text_mlm # LOSSES: # NAMES: ['CrossEntropy', 'Accuracy'] # LOSS_WEIGHT: 0.33333 # REDUCTION: 'mean' # INFERENCE: # VOCAB: 'CLIP' # GENERATION_MODE: False # - # NAME: mscoco_caption # DATASETS: # TRAIN: 'ImageTextPairDataset' # # VAL: 'ImageTextPairDataset' # # TEST: 'ImageTextPairDataset' # TASK_TYPE: 'image_caption' # DATASET_NAME: 'MSCOCO' # TARGET_SET: ['Vocab_Word'] # DATALOADER: # TRAIN_BATCH_SIZE: 64 # TEST_BATCH_SIZE: 32 # NUM_WORKERS: 4 # FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin' # ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations' # S3_PATH: 's3://coco/' # SEQ_PER_SAMPLE: 1 # CACHE_MODE: True # CIRCULAR_CACHE_MODE: False # ZIP_MODE: False # CACHE_ORIGIN_IMAGE: False # RANDOM_CAPTION: False # AS_NUMPY_AS_POSSIBLE: False # SAMPLING_WEIGHT: 1.0 # TRANSFORM: 'clip_transforms' # RANDOM_MASK: True # MODEL: # MAX_SEQ_LEN: 50 # EVAL_MAX_SEQ_LEN: 21 # TEMP_NAME: logit_scale_caption # LOSSES: # NAMES: ['CrossEntropy', 'Accuracy'] # LOSS_WEIGHT: 0.33333 # REDUCTION: 'mean' # DECODE_STRATEGY: # NAME: 'CaptionBeamSearcherV3' # BEAM_SIZE: 2 # # LEN_PENALTY: 1.0 # INFERENCE: # NAME: 'COCOEvaler' # VOCAB: 'CLIP' # ID_KEY: 'image_id' # VALUE: 'caption' # VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json' # TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json' # GENERATION_MODE: True # - # NAME: mscoco_retrieve # DATASETS: # TRAIN: 'ImageTextPairDataset' # # TEST: 'ImageTextPairDataset' # TASK_TYPE: 'image_retrieval' # DATASET_NAME: 'MSCOCO' # DATALOADER: # TRAIN_BATCH_SIZE: 100 # TEST_BATCH_SIZE: 32 # NUM_WORKERS: 1 # FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin' # ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations' # S3_PATH: 's3://coco/' # SEQ_PER_SAMPLE: 1 # CACHE_MODE: True # CIRCULAR_CACHE_MODE: False # ZIP_MODE: False # CACHE_ORIGIN_IMAGE: False # RANDOM_CAPTION: False # AS_NUMPY_AS_POSSIBLE: False # SAMPLING_WEIGHT: 1.0 # TRANSFORM: 'clip_transforms' # MODEL: # MAX_SEQ_LEN: 50 # TEMP_NAME: logit_scale_retrieve # LOSSES: # NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy'] # LABELSMOOTHING: 0.1 # LOSS_WEIGHT: 1.0 # REDUCTION: 'mean' # INFERENCE: # VOCAB: 'CLIP' # ID_KEY: 'image_id' # VALUE: 'caption' # NAME: 'RetrievalEvaler' # VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline' # TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline' # GENERATION_MODE: False ENGINE: NAME: 'UnifiedTrainer' MODEL: META_ARCHITECTURE: 'MultiTaskTransformerEncoder' ENCODER: 'UnifiedBertEncoder' IN_TUNING: True # use IN1k instead of 22k SHARE_LAYERNORM: True BERT: NORMALIZE_DECISION: "BERTPre" DROP_PATH_PROB: 0.1 DROP_PATH_PROB_FIXED: True UNIFY_QKV: True MODEL_EMA: False MODEL_EMA_DECAY: 0.9999 MAEParamsInit: True POSEMBEDFIX: True IMG_INPUT_SIZE: 224 PATCH_SIZE: 16 LAYER_SCALE: True LAYER_SCALE_INIT: 1e-3 DATALOADER: USE_WEIGHTED_SAMPLER: True UNIFIED_DATASET: True NUM_WORKERS: 16 PADDING_TO_MAX: False # True for debugging or token moe with distributed moe ####################################### Optimizer ####################################### SOLVER: NAME: 'Adam' TORCH_OPTIMIZER: True PARAMS_SEPERATE: True # PARAMS_GROUP: True # EPOCH: 1 MAX_ITER: 200000 CHECKPOINT_PERIOD: 50000 EVAL_PERIOD: 500000 BASE_LR: 0.001 BIAS_LR_FACTOR: 1.0 WEIGHT_DECAY: 0.05 WEIGHT_DECAY_NORM: 0.0 WEIGHT_DECAY_BIAS: 0.0 WEIGHT_DECAY_EMBEDDING: 0.0 MOMENTUM: 0.9 DAMPENING: 0.0 NESTEROV: 0.0 BETAS: [0.9, 0.95] EPS: 1e-6 GRAD_CLIP: 0.1 GRAD_CLIP_TYPE: 'norm' ACCUM_ITER: 0 AMP_FP16: True APEX_FP16: False # dangerous WRITE_PERIOD: 50 MIN_LOSS_SCLE: 2048.0 # BF16: False # True # ZEROSTAGE: 2 LOSS_SCALE_WINDOW: 200 ####################################### lr scheduler ####################################### LR_SCHEDULER: NAME: 'WarmupCosine' WARMUP: 20000 MIN_LR: 0.000001 ####################################### evaluation ####################################### INFERENCE: VOCAB: 'CLIP' ITER_BASED: True find_unused_parameters: true # ENCODERS: # - # NAME: VisualEncoder # TYPE: VisualEncoder # DROP_PATH_PROB: 0.0 # HIDDEN_SIZE: 192 # HIDDEN_DROPOUT_PROB: 0. # HIDDEN_ACT: "gelu" # NUM_ATTENTION_HEADS: 3 # INTERMEDIATE_SIZE: 768 # INTERMEDIATE_DROP: 0. # FFN_DROPOUT_PROB: 0. # ATTENTION_PROBS_DROPOUT_PROB: 0. # NUM_HIDDEN_LAYERS: 6 # NUM_GENERATION_LAYERS: 0 # DROP_PATH_PROB_FIXED: True # - # NAME: TextEncoder # TYPE: TextEncoder # DROP_PATH_PROB: 0.0 # HIDDEN_SIZE: 192 # HIDDEN_DROPOUT_PROB: 0. # HIDDEN_ACT: "gelu" # NUM_ATTENTION_HEADS: 3 # INTERMEDIATE_SIZE: 768 # INTERMEDIATE_DROP: 0. # FFN_DROPOUT_PROB: 0. # ATTENTION_PROBS_DROPOUT_PROB: 0. # NUM_HIDDEN_LAYERS: 6 # NUM_GENERATION_LAYERS: 0 # DROP_PATH_PROB_FIXED: True