heyitskim1912 commited on
Commit
5afad00
1 Parent(s): 8a9f34a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cifar10
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: AML_A2_Q4
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: cifar10
17
+ type: cifar10
18
+ config: plain_text
19
+ split: train[:]
20
+ args: plain_text
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9894
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # AML_A2_Q4
31
+
32
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.0432
35
+ - Accuracy: 0.9894
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 2e-05
55
+ - train_batch_size: 20
56
+ - eval_batch_size: 4
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 3
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
+ | 0.1642 | 1.0 | 2250 | 0.0572 | 0.9862 |
67
+ | 0.1503 | 2.0 | 4500 | 0.0591 | 0.9854 |
68
+ | 0.1818 | 3.0 | 6750 | 0.0432 | 0.9894 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.28.0
74
+ - Pytorch 2.0.1+cu118
75
+ - Datasets 2.12.0
76
+ - Tokenizers 0.13.3