{"policy_class": {":type:": "", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f24d10cb780>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1666340721624226919, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAkB6PP34Mkz+9p7s+6P8yP1IK/z/G0OQ+JDRRP4nQl79+CdO/ZYZDvvfdQr8KcrE8Vc8PQGwO9b1XQxo/fVnxOstrmD9G/Xa/Rl3APR6pDL+FO/c+pFzcv15S/T/edik+ZDqpv90n1z6vlAw/PmBlP4HltD/iXbs/MwjOPT6PIEC99js/LY1LPx8haz5Avqi/ZoMSPz0Yjz+XHkO/X3pBuYeOcj8hogW+CLoaP/TwSryd1Ik/sB+Cv4fH8b7l8hi+z9BNvwU5qz2ZByZAtJlUvmQ6qb+KTBjAr5QMPz5gZT9pymg/k35vP967+j4MwtA/GefSP6NHDMDVFei+mFlTv32gcT8MQu68b1mTvg8exz/Yc9s/xZirv7ThGj8F564+dbBaPha5879m0LK+Kx7tvkTfS7+35t08nqfZPzqYwb9kOqm/3SfXPq+UDD8+YGU/3+ZUvxZ25j8yuae+LF7uPb2i0j+JfUU/lzEuPnUPoL6Ph8Y+BNMavuePQr9aVh283X8cPiLA0T8Iuxs/IgFHPQRjkj97aylAPrYWP5Af572Njqw+2aOHP8piyrwUgJk9ZDqpv90n1z6vlAw/PmBlP5R0lGIu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAJYuBTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAnqsE9AAAAAOib6b8AAAAAMxqmvAAAAABIguk/AAAAAJLuhz0AAAAAtBX2PwAAAAA9hxC+AAAAADBMAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUE7s1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAI9favQAAAABFegDAAAAAACnCYTsAAAAAqdPcPwAAAAAqJje9AAAAAB3mAEAAAAAAWYIgPAAAAAD8hfO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyIj8tAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAX9Hz0AAAAAtfThvwAAAAAFa5M8AAAAAJRX7z8AAAAAbb4YPQAAAACAp/8/AAAAAHfcDj0AAAAAwujjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzJSDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIChb949AAAAAG8H3r8AAAAA4InsOwAAAADqZ+o/AAAAADQ2eD0AAAAAXVPwPwAAAADnA5K9AAAAANZj4b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpWUo+fRNSMAWyUTegDjAF0lEdAqGRnTI/7i3V9lChoBkdAbelgssg+yWgHTegDaAhHQKhlEbT+ee51fZQoaAZHQJfSK8yvcJtoB03oA2gIR0CoaxkgW8AadX2UKGgGR0CWV4DKHO8kaAdN6ANoCEdAqG/adBjWkXV9lChoBkdAm+fhIjGDMGgHTegDaAhHQKhw6zLOiWV1fZQoaAZHQIQ/6qfe1rtoB03oA2gIR0CocZnDBMzudX2UKGgGR0CZowJKJ2t/aAdN6ANoCEdAqHe7G3nZCnV9lChoBkdAmKY9g4Otn2gHTegDaAhHQKh8QX6ZYxN1fZQoaAZHQJkVeDQJHAhoB03oA2gIR0CofUvWhAW0dX2UKGgGR0CYVAV1fVqfaAdN6ANoCEdAqH388gZCOXV9lChoBkdAiJYSv1UVBWgHTegDaAhHQKiEOIj4YaZ1fZQoaAZHQG1ptPxhDw9oB03oA2gIR0CoikKZc9nsdX2UKGgGR0CO5xVBlcyFaAdN6ANoCEdAqIvhV0cOsnV9lChoBkdAkKL6rmyPdWgHTegDaAhHQKiMzjd56dF1fZQoaAZHQJfAMu7HyVhoB03oA2gIR0CoktWHck+pdX2UKGgGR0CYo9MiKR+0aAdN6ANoCEdAqJdjpC8e0XV9lChoBkdAlkAlnZkCm2gHTegDaAhHQKiYcnwXqJN1fZQoaAZHQJkz4YrJ8v5oB03oA2gIR0ComSL0z0pWdX2UKGgGR0CYcY5MURFraAdN6ANoCEdAqJ9B80DU3HV9lChoBkdAijurYf4h2WgHTegDaAhHQKij4KTB68h1fZQoaAZHQJIkMoLG7z1oB03oA2gIR0CopO16/qPfdX2UKGgGR0B2k2Rq46OpaAdN6ANoCEdAqKWj7di2D3V9lChoBkdAnZUPc8DB/WgHTegDaAhHQKirp9LHuJF1fZQoaAZHQJiCQAlv60poB03oA2gIR0CosFb0e2d/dX2UKGgGR0CZrmojOcDsaAdN6ANoCEdAqLFwacZtN3V9lChoBkdAnMjqoQ4CIWgHTegDaAhHQKiyKGxlg+h1fZQoaAZHQJ2qfH93r2RoB03oA2gIR0CouCX0PH1fdX2UKGgGR0CNJ8nTiKixaAdN6ANoCEdAqLyz0WdmQXV9lChoBkdAmfWNtEXtSmgHTegDaAhHQKi9s3irDIl1fZQoaAZHQJzBlkFwDNhoB03oA2gIR0CovmM8PnSwdX2UKGgGR0CZHHVFhG6PaAdN6ANoCEdAqMSAwwj+rHV9lChoBkdAm4pefRNRFmgHTegDaAhHQKjJDo9LYf51fZQoaAZHQJjDERAbADdoB03oA2gIR0Coyg8kMTewdX2UKGgGR0CY4mJvo/zKaAdN6ANoCEdAqMrAj2SMcnV9lChoBkdAlfdoKx9oe2gHTegDaAhHQKjQxb48EFJ1fZQoaAZHQJgMj4DcM3JoB03oA2gIR0Co1Vc63iJgdX2UKGgGR0CY9vX8wYceaAdN6ANoCEdAqNZVXko4MnV9lChoBkdAmTUmEwnIAGgHTegDaAhHQKjXAgr6LwZ1fZQoaAZHQJzhUA4n4PBoB03oA2gIR0Co3QMeOn2qdX2UKGgGR0CR6fsEJSiuaAdN6ANoCEdAqOGRosZpBXV9lChoBkdAmkhn3lCCz2gHTegDaAhHQKjik5Jbt7d1fZQoaAZHQJfFWrXDm8xoB03oA2gIR0Co40SFoL5RdX2UKGgGR0Cc4TBacI7eaAdN6ANoCEdAqOk4RkEs8XV9lChoBkdAmMZhmkFfRmgHTegDaAhHQKjt6k6cRUZ1fZQoaAZHQJcaLPZ7HABoB03oA2gIR0Co7xtH6MzedX2UKGgGR0CUIekS26TXaAdN6ANoCEdAqO/RMcp9Z3V9lChoBkdAkKe/iDM/yGgHTegDaAhHQKj2AHgxagV1fZQoaAZHQJoQCfh/Aj9oB03oA2gIR0Co+oSxA0KrdX2UKGgGR0CQydh9LHuJaAdN6ANoCEdAqPuKwjdHlXV9lChoBkdAmTydeMQ2/GgHTegDaAhHQKj8PYeT3Zh1fZQoaAZHQJkbOyTpxFRoB03oA2gIR0CpAmu2iL2pdX2UKGgGR0CYQjLpiZv2aAdN6ANoCEdAqQbsyvcJt3V9lChoBkdAmAuwLeANG2gHTegDaAhHQKkH90Zm7J51fZQoaAZHQJlGM4vN/vxoB03oA2gIR0CpCKgEdNnHdX2UKGgGR0CbZIAqd6LPaAdN6ANoCEdAqQ6p+UhV2nV9lChoBkdAl+HZZfUnX2gHTegDaAhHQKkTd4s3AEd1fZQoaAZHQJnu8Er5IpZoB03oA2gIR0CpFH+cH4XXdX2UKGgGR0CZqVlwcYIjaAdN6ANoCEdAqRUoQtjCpHV9lChoBkdAkYyDiKiwjmgHTegDaAhHQKkbMV8CxNZ1fZQoaAZHQJwN7655JK9oB03oA2gIR0CpH9OVX3g2dX2UKGgGR0CWPvpMYdhiaAdN6ANoCEdAqSDbshPj43V9lChoBkdAlOPiYLLIP2gHTegDaAhHQKkhji8WbgF1fZQoaAZHQJbB17Qb+99oB03oA2gIR0CpJ6YqG1x9dX2UKGgGR0CRhSn889wFaAdN6ANoCEdAqSx2Fg2If3V9lChoBkdAlOw0WIoE0WgHTegDaAhHQKktg47zTWp1fZQoaAZHQJiw5EqlP8BoB03oA2gIR0CpLjyQxN7CdX2UKGgGR0CY/rKjzqbCaAdN6ANoCEdAqTSbq4YrKHV9lChoBkdAmQD1iBoVVWgHTegDaAhHQKk5QdS2php1fZQoaAZHQJho0O6NEPVoB03oA2gIR0CpOksCLdeqdX2UKGgGR0CWHYOrQw9JaAdN6ANoCEdAqTsOAEt/WnV9lChoBkdAl46kvboKUmgHTegDaAhHQKlBCXBP9DR1fZQoaAZHQJrchh7Vrh1oB03oA2gIR0CpRaMuWa+fdX2UKGgGR0CYtEJcgQpXaAdN6ANoCEdAqUawlQdjonV9lChoBkdAmnFPllsguGgHTegDaAhHQKlHZLt/nW91fZQoaAZHQJksZ8D0UXZoB03oA2gIR0CpTYd7F85TdX2UKGgGR0CboZFsHjZMaAdN6ANoCEdAqVICRSxZ+3V9lChoBkdAmeE7+5vtMWgHTegDaAhHQKlTCe2/i5x1fZQoaAZHQJq6I6V+qipoB03oA2gIR0CpU7nK4hECdX2UKGgGR0CdJzoNutOmaAdN6ANoCEdAqVm5tpEhJXV9lChoBkdAmYJOoHcDbWgHTegDaAhHQKleMd8Rcu91fZQoaAZHQJndsLiMo+hoB03oA2gIR0CpX0Rh+fAcdX2UKGgGR0Ca39XDm8ujaAdN6ANoCEdAqV/6iAUcn3V9lChoBkdAnDbLf+CK8GgHTegDaAhHQKll4mm+Cbt1fZQoaAZHQJin13u/k/9oB03oA2gIR0Cpar9N34bkdX2UKGgGR0Cd2E0/nnuBaAdN6ANoCEdAqWvKFTNt7HV9lChoBkdAm3O/9LpRoGgHTegDaAhHQKlser5IpYt1fZQoaAZHQJ6ebAIppexoB03oA2gIR0CpcqfYJ3PidX2UKGgGR0CbR0l3hXKbaAdN6ANoCEdAqXc6be/HpHV9lChoBkdAmwisxwhnrmgHTegDaAhHQKl4RXZGrjp1fZQoaAZHQJpq87bL2YhoB03oA2gIR0CpePeBpYcOdX2UKGgGR0ByX6ZJCjUNaAdN6ANoCEdAqX8AaisXBXV9lChoBkdAk3EIlIEr5WgHTegDaAhHQKmDcc/+sHV1fZQoaAZHQJinDKaG5+ZoB03oA2gIR0CphHa2nbZfdX2UKGgGR0CW3rclw97oaAdN6ANoCEdAqYUmjVQQ+XV9lChoBkdAfSVuIhyKemgHTegDaAhHQKmLLPk7wKB1fZQoaAZHQJNMXLxI8QtoB03oA2gIR0Cpj6rcKw6idX2UKGgGR0CVNNUo8ZDRaAdN6ANoCEdAqZCxAQg9vHV9lChoBkdAh4+cc2itaWgHTegDaAhHQKmRaipvP1N1fZQoaAZHQJE9uIZZSvVoB03oA2gIR0Cpl2wvQF9sdX2UKGgGR0CW0/WtEG7jaAdN6ANoCEdAqZwITIvJzXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}