--- library_name: diffusers --- # Model Card for Model ID Script for creating dummy random model: ```python import torch from diffusers import HunyuanVideoTransformer3DModel, AutoencoderKLHunyuanVideo, FlowMatchEulerDiscreteScheduler, HunyuanVideoPipeline from transformers import LlamaModel, LlamaTokenizerFast, CLIPTextModel, CLIPTokenizer, LlamaConfig, CLIPTextConfig torch.manual_seed(0) transformer = HunyuanVideoTransformer3DModel( in_channels=4, out_channels=4, num_attention_heads=2, attention_head_dim=10, num_layers=1, num_single_layers=1, num_refiner_layers=1, patch_size=1, patch_size_t=1, guidance_embeds=True, text_embed_dim=16, pooled_projection_dim=8, rope_axes_dim=(2, 4, 4), ) torch.manual_seed(0) vae = AutoencoderKLHunyuanVideo( in_channels=3, out_channels=3, latent_channels=4, down_block_types=( "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", ), up_block_types=( "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", ), block_out_channels=(8, 8, 8, 8), layers_per_block=1, act_fn="silu", norm_num_groups=4, scaling_factor=0.476986, spatial_compression_ratio=8, temporal_compression_ratio=4, mid_block_add_attention=True, ) torch.manual_seed(0) scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0) llama_text_encoder_config = LlamaConfig( bos_token_id=0, eos_token_id=2, hidden_size=16, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=2, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=32, ) clip_text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=8, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=2, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=32, ) text_encoder = LlamaModel(llama_text_encoder_config) tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") torch.manual_seed(0) text_encoder_2 = CLIPTextModel(clip_text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") pipe = HunyuanVideoPipeline( transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, text_encoder_2=text_encoder_2, tokenizer_2=tokenizer_2, vae=vae, scheduler=scheduler, ) pipe.push_to_hub("hf-internal-testing/tiny-random-hunyuanvideo") ``` ## Model Details ### Model Description This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]