add eval
Browse files
eval.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from datasets import load_dataset, load_metric, Audio
|
3 |
+
from transformers import AutoModelForCTC, AutoProcessor, Wav2Vec2Processor
|
4 |
+
import torch
|
5 |
+
|
6 |
+
lang = "sv-SE"
|
7 |
+
model_id = "./xls-r-300m-sv"
|
8 |
+
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
dataset = load_dataset("mozilla-foundation/common_voice_7_0", lang, split="test", use_auth_token=True)
|
12 |
+
wer = load_metric("wer")
|
13 |
+
|
14 |
+
dataset = dataset.select(range(100))
|
15 |
+
|
16 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
|
17 |
+
|
18 |
+
model = AutoModelForCTC.from_pretrained(model_id).to(device)
|
19 |
+
processor = Wav2Vec2Processor.from_pretrained(model_id)
|
20 |
+
|
21 |
+
|
22 |
+
def map_to_pred(batch):
|
23 |
+
input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest", sampling_rate=16_000).input_values
|
24 |
+
|
25 |
+
with torch.no_grad():
|
26 |
+
logits = model(input_values.to(device)).logits
|
27 |
+
|
28 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
29 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
30 |
+
batch["transcription"] = transcription
|
31 |
+
return batch
|
32 |
+
|
33 |
+
|
34 |
+
result = dataset.map(map_to_pred, remove_columns=["audio"])
|
35 |
+
|
36 |
+
import ipdb; ipdb.set_trace()
|
37 |
+
wer_result = wer.compute(references=result["sentence"], predictions=result["transcription"])
|
38 |
+
|
39 |
+
print("WER", wer_result)
|