hf-test commited on
Commit
0eb19a0
·
1 Parent(s): 0ee3481

Training in progress, step 5

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint-*/
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<s>": 51, "</s>": 52}
config.json ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "hf-test/xls-r-dummy",
3
+ "activation_dropout": 0.0,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.0,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 256,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": false,
17
+ "conv_dim": [
18
+ 32,
19
+ 32,
20
+ 32
21
+ ],
22
+ "conv_kernel": [
23
+ 8,
24
+ 8,
25
+ 8
26
+ ],
27
+ "conv_stride": [
28
+ 4,
29
+ 4,
30
+ 4
31
+ ],
32
+ "ctc_loss_reduction": "mean",
33
+ "ctc_zero_infinity": false,
34
+ "diversity_loss_weight": 0.1,
35
+ "do_stable_layer_norm": true,
36
+ "eos_token_id": 2,
37
+ "feat_extract_activation": "gelu",
38
+ "feat_extract_dropout": 0.0,
39
+ "feat_extract_norm": "layer",
40
+ "feat_proj_dropout": 0.0,
41
+ "feat_quantizer_dropout": 0.0,
42
+ "final_dropout": 0.0,
43
+ "hidden_act": "gelu",
44
+ "hidden_dropout": 0.0,
45
+ "hidden_dropout_prob": 0.1,
46
+ "hidden_size": 16,
47
+ "initializer_range": 0.02,
48
+ "intermediate_size": 20,
49
+ "layer_norm_eps": 1e-05,
50
+ "layerdrop": 0.0,
51
+ "mask_feature_length": 10,
52
+ "mask_feature_min_masks": 0,
53
+ "mask_feature_prob": 0.0,
54
+ "mask_time_length": 10,
55
+ "mask_time_min_masks": 2,
56
+ "mask_time_prob": 0.05,
57
+ "model_type": "wav2vec2",
58
+ "num_adapter_layers": 3,
59
+ "num_attention_heads": 2,
60
+ "num_codevector_groups": 2,
61
+ "num_codevectors_per_group": 320,
62
+ "num_conv_pos_embedding_groups": 2,
63
+ "num_conv_pos_embeddings": 16,
64
+ "num_feat_extract_layers": 3,
65
+ "num_hidden_layers": 4,
66
+ "num_negatives": 10,
67
+ "output_hidden_size": 16,
68
+ "pad_token_id": 50,
69
+ "proj_codevector_dim": 256,
70
+ "tdnn_dilation": [
71
+ 1,
72
+ 2,
73
+ 3,
74
+ 1,
75
+ 1
76
+ ],
77
+ "tdnn_dim": [
78
+ 512,
79
+ 512,
80
+ 512,
81
+ 512,
82
+ 1500
83
+ ],
84
+ "tdnn_kernel": [
85
+ 5,
86
+ 3,
87
+ 3,
88
+ 1,
89
+ 1
90
+ ],
91
+ "torch_dtype": "float32",
92
+ "transformers_version": "4.16.0.dev0",
93
+ "use_weighted_layer_sum": false,
94
+ "vocab_size": 53,
95
+ "xvector_output_dim": 512
96
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_processor_class": null,
3
+ "do_normalize": true,
4
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
5
+ "feature_size": 1,
6
+ "padding_side": "right",
7
+ "padding_value": 0.0,
8
+ "return_attention_mask": false,
9
+ "sampling_rate": 16000
10
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cee26574ac651214ce6d8f743259cb8f99fd7be13da0e8cc89ab282d9c88ea6
3
+ size 143910
run.sh ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python run_speech_recognition_ctc.py \
2
+ --dataset_name="mozilla-foundation/common_voice_7_0" \
3
+ --model_name_or_path="hf-test/xls-r-dummy" \
4
+ --dataset_config_name="ab" \
5
+ --output_dir="./" \
6
+ --overwrite_output_dir \
7
+ --max_steps="10" \
8
+ --per_device_train_batch_size="2" \
9
+ --learning_rate="3e-4" \
10
+ --save_total_limit="1" \
11
+ --evaluation_strategy="steps" \
12
+ --text_column_name="sentence" \
13
+ --save_steps="5" \
14
+ --layerdrop="0.0" \
15
+ --freeze_feature_encoder \
16
+ --gradient_checkpointing \
17
+ --fp16 \
18
+ --group_by_length \
19
+ --push_to_hub \
20
+ --use_auth_token \
21
+ --do_train --do_eval
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,731 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from datasets import DatasetDict, load_dataset, load_metric
32
+
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForCTC,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Trainer,
42
+ TrainingArguments,
43
+ Wav2Vec2Processor,
44
+ set_seed,
45
+ )
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+
50
+
51
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
+ check_min_version("4.16.0.dev0")
53
+
54
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
55
+
56
+
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ def list_field(default=None, metadata=None):
61
+ return field(default_factory=lambda: default, metadata=metadata)
62
+
63
+
64
+ @dataclass
65
+ class ModelArguments:
66
+ """
67
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
68
+ """
69
+
70
+ model_name_or_path: str = field(
71
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
72
+ )
73
+ tokenizer_name_or_path: Optional[str] = field(
74
+ default=None,
75
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
76
+ )
77
+ cache_dir: Optional[str] = field(
78
+ default=None,
79
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
80
+ )
81
+ freeze_feature_encoder: bool = field(
82
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
83
+ )
84
+ attention_dropout: float = field(
85
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
86
+ )
87
+ activation_dropout: float = field(
88
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
89
+ )
90
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
91
+ hidden_dropout: float = field(
92
+ default=0.0,
93
+ metadata={
94
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
95
+ },
96
+ )
97
+ final_dropout: float = field(
98
+ default=0.0,
99
+ metadata={"help": "The dropout probability for the final projection layer."},
100
+ )
101
+ mask_time_prob: float = field(
102
+ default=0.05,
103
+ metadata={
104
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
105
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
106
+ "vectors will be masked along the time axis."
107
+ },
108
+ )
109
+ mask_time_length: int = field(
110
+ default=10,
111
+ metadata={"help": "Length of vector span to mask along the time axis."},
112
+ )
113
+ mask_feature_prob: float = field(
114
+ default=0.0,
115
+ metadata={
116
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
117
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
118
+ },
119
+ )
120
+ mask_feature_length: int = field(
121
+ default=10,
122
+ metadata={"help": "Length of vector span to mask along the feature axis."},
123
+ )
124
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
125
+ ctc_loss_reduction: Optional[str] = field(
126
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
127
+ )
128
+
129
+
130
+ @dataclass
131
+ class DataTrainingArguments:
132
+ """
133
+ Arguments pertaining to what data we are going to input our model for training and eval.
134
+
135
+ Using `HfArgumentParser` we can turn this class
136
+ into argparse arguments to be able to specify them on
137
+ the command line.
138
+ """
139
+
140
+ dataset_name: str = field(
141
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
142
+ )
143
+ dataset_config_name: str = field(
144
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
145
+ )
146
+ train_split_name: str = field(
147
+ default="train+validation",
148
+ metadata={
149
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
150
+ },
151
+ )
152
+ eval_split_name: str = field(
153
+ default="test",
154
+ metadata={
155
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
156
+ },
157
+ )
158
+ audio_column_name: str = field(
159
+ default="audio",
160
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
161
+ )
162
+ text_column_name: str = field(
163
+ default="text",
164
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
165
+ )
166
+ overwrite_cache: bool = field(
167
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
168
+ )
169
+ preprocessing_num_workers: Optional[int] = field(
170
+ default=None,
171
+ metadata={"help": "The number of processes to use for the preprocessing."},
172
+ )
173
+ max_train_samples: Optional[int] = field(
174
+ default=None,
175
+ metadata={
176
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
177
+ "value if set."
178
+ },
179
+ )
180
+ max_eval_samples: Optional[int] = field(
181
+ default=None,
182
+ metadata={
183
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
184
+ "value if set."
185
+ },
186
+ )
187
+ chars_to_ignore: Optional[List[str]] = list_field(
188
+ default=None,
189
+ metadata={"help": "A list of characters to remove from the transcripts."},
190
+ )
191
+ eval_metrics: List[str] = list_field(
192
+ default=["wer"],
193
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
194
+ )
195
+ max_duration_in_seconds: float = field(
196
+ default=20.0,
197
+ metadata={
198
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
199
+ },
200
+ )
201
+ min_duration_in_seconds: float = field(
202
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
203
+ )
204
+ preprocessing_only: bool = field(
205
+ default=False,
206
+ metadata={
207
+ "help": "Whether to only do data preprocessing and skip training. "
208
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
209
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
210
+ "so that the cached datasets can consequently be loaded in distributed training"
211
+ },
212
+ )
213
+ use_auth_token: bool = field(
214
+ default=False,
215
+ metadata={
216
+ "help": "If :obj:`True`, will use the token generated when running"
217
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
218
+ },
219
+ )
220
+ unk_token: str = field(
221
+ default="[UNK]",
222
+ metadata={"help": "The unk token for the tokenizer"},
223
+ )
224
+ pad_token: str = field(
225
+ default="[PAD]",
226
+ metadata={"help": "The padding token for the tokenizer"},
227
+ )
228
+ word_delimiter_token: str = field(
229
+ default="|",
230
+ metadata={"help": "The word delimiter token for the tokenizer"},
231
+ )
232
+ phoneme_language: Optional[str] = field(
233
+ default=None,
234
+ metadata={
235
+ "help": "The target language that should be used be"
236
+ " passed to the tokenizer for tokenization. Note that"
237
+ " this is only relevant if the model classifies the"
238
+ " input audio to a sequence of phoneme sequences."
239
+ },
240
+ )
241
+
242
+
243
+ @dataclass
244
+ class DataCollatorCTCWithPadding:
245
+ """
246
+ Data collator that will dynamically pad the inputs received.
247
+ Args:
248
+ processor (:class:`~transformers.AutoProcessor`)
249
+ The processor used for proccessing the data.
250
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
251
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
252
+ among:
253
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
254
+ sequence if provided).
255
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
256
+ maximum acceptable input length for the model if that argument is not provided.
257
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
258
+ different lengths).
259
+ max_length (:obj:`int`, `optional`):
260
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
261
+ max_length_labels (:obj:`int`, `optional`):
262
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
263
+ pad_to_multiple_of (:obj:`int`, `optional`):
264
+ If set will pad the sequence to a multiple of the provided value.
265
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
266
+ 7.5 (Volta).
267
+ """
268
+
269
+ processor: AutoProcessor
270
+ padding: Union[bool, str] = "longest"
271
+ pad_to_multiple_of: Optional[int] = None
272
+ pad_to_multiple_of_labels: Optional[int] = None
273
+
274
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
275
+ # split inputs and labels since they have to be of different lenghts and need
276
+ # different padding methods
277
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
278
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
279
+
280
+ batch = self.processor.pad(
281
+ input_features,
282
+ padding=self.padding,
283
+ pad_to_multiple_of=self.pad_to_multiple_of,
284
+ return_tensors="pt",
285
+ )
286
+
287
+ with self.processor.as_target_processor():
288
+ labels_batch = self.processor.pad(
289
+ label_features,
290
+ padding=self.padding,
291
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
292
+ return_tensors="pt",
293
+ )
294
+
295
+ # replace padding with -100 to ignore loss correctly
296
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
297
+
298
+ batch["labels"] = labels
299
+
300
+ return batch
301
+
302
+
303
+ def create_vocabulary_from_data(
304
+ datasets: DatasetDict,
305
+ word_delimiter_token: Optional[str] = None,
306
+ unk_token: Optional[str] = None,
307
+ pad_token: Optional[str] = None,
308
+ ):
309
+ # Given training and test labels create vocabulary
310
+ def extract_all_chars(batch):
311
+ all_text = " ".join(batch["target_text"])
312
+ vocab = list(set(all_text))
313
+ return {"vocab": [vocab], "all_text": [all_text]}
314
+
315
+ vocabs = datasets.map(
316
+ extract_all_chars,
317
+ batched=True,
318
+ batch_size=-1,
319
+ keep_in_memory=True,
320
+ remove_columns=datasets["train"].column_names,
321
+ )
322
+
323
+ # take union of all unique characters in each dataset
324
+ vocab_set = functools.reduce(
325
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
326
+ )
327
+
328
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
329
+
330
+ # replace white space with delimiter token
331
+ if word_delimiter_token is not None:
332
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
333
+ del vocab_dict[" "]
334
+
335
+ # add unk and pad token
336
+ if unk_token is not None:
337
+ vocab_dict[unk_token] = len(vocab_dict)
338
+
339
+ if pad_token is not None:
340
+ vocab_dict[pad_token] = len(vocab_dict)
341
+
342
+ return vocab_dict
343
+
344
+
345
+ def main():
346
+ # See all possible arguments in src/transformers/training_args.py
347
+ # or by passing the --help flag to this script.
348
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
349
+
350
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
351
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
352
+ # If we pass only one argument to the script and it's the path to a json file,
353
+ # let's parse it to get our arguments.
354
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
355
+ else:
356
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
357
+
358
+ # Detecting last checkpoint.
359
+ last_checkpoint = None
360
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
361
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
362
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
363
+ raise ValueError(
364
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
365
+ "Use --overwrite_output_dir to overcome."
366
+ )
367
+ elif last_checkpoint is not None:
368
+ logger.info(
369
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
370
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
371
+ )
372
+
373
+ # Setup logging
374
+ logging.basicConfig(
375
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
376
+ datefmt="%m/%d/%Y %H:%M:%S",
377
+ handlers=[logging.StreamHandler(sys.stdout)],
378
+ )
379
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
380
+
381
+ # Log on each process the small summary:
382
+ logger.warning(
383
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
384
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
385
+ )
386
+ # Set the verbosity to info of the Transformers logger (on main process only):
387
+ if is_main_process(training_args.local_rank):
388
+ transformers.utils.logging.set_verbosity_info()
389
+ logger.info("Training/evaluation parameters %s", training_args)
390
+
391
+ # Set seed before initializing model.
392
+ set_seed(training_args.seed)
393
+
394
+ # 1. First, let's load the dataset
395
+ raw_datasets = DatasetDict()
396
+
397
+ if training_args.do_train:
398
+ raw_datasets["train"] = load_dataset(
399
+ data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name
400
+ )
401
+
402
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
403
+ raise ValueError(
404
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
405
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
406
+ f"{', '.join(raw_datasets['train'].column_names)}."
407
+ )
408
+
409
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
410
+ raise ValueError(
411
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
412
+ "Make sure to set `--text_column_name` to the correct text column - one of "
413
+ f"{', '.join(raw_datasets['train'].column_names)}."
414
+ )
415
+
416
+ if data_args.max_train_samples is not None:
417
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
418
+
419
+ if training_args.do_eval:
420
+ raw_datasets["eval"] = load_dataset(
421
+ data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name
422
+ )
423
+
424
+ if data_args.max_eval_samples is not None:
425
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
426
+
427
+ # 2. We remove some special characters from the datasets
428
+ # that make training complicated and do not help in transcribing the speech
429
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
430
+ # that could be easily picked up by the model
431
+ chars_to_ignore_regex = (
432
+ f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
433
+ )
434
+ text_column_name = data_args.text_column_name
435
+
436
+ def remove_special_characters(batch):
437
+ if chars_to_ignore_regex is not None:
438
+ batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
439
+ else:
440
+ batch["target_text"] = batch[text_column_name].lower() + " "
441
+ return batch
442
+
443
+ with training_args.main_process_first(desc="dataset map special characters removal"):
444
+ raw_datasets = raw_datasets.map(
445
+ remove_special_characters,
446
+ remove_columns=[text_column_name],
447
+ desc="remove special characters from datasets",
448
+ )
449
+
450
+ # save special tokens for tokenizer
451
+ word_delimiter_token = data_args.word_delimiter_token
452
+ unk_token = data_args.unk_token
453
+ pad_token = data_args.pad_token
454
+
455
+ # 3. Next, let's load the config as we might need it to create
456
+ # the tokenizer
457
+ # load config
458
+ config = AutoConfig.from_pretrained(
459
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
460
+ )
461
+
462
+ # 4. Next, if no tokenizer file is defined,
463
+ # we create the vocabulary of the model by extracting all unique characters from
464
+ # the training and evaluation datasets
465
+ # We need to make sure that only first rank saves vocabulary
466
+ # make sure all processes wait until vocab is created
467
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
468
+ tokenizer_kwargs = {}
469
+ if tokenizer_name_or_path is None:
470
+ # save vocab in training output dir
471
+ tokenizer_name_or_path = training_args.output_dir
472
+
473
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
474
+
475
+ with training_args.main_process_first():
476
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
477
+ os.remove(vocab_file)
478
+
479
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
480
+ if not os.path.isfile(vocab_file):
481
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
482
+ vocab_dict = create_vocabulary_from_data(
483
+ raw_datasets,
484
+ word_delimiter_token=word_delimiter_token,
485
+ unk_token=unk_token,
486
+ pad_token=pad_token,
487
+ )
488
+
489
+ # save vocab dict to be loaded into tokenizer
490
+ with open(vocab_file, "w") as file:
491
+ json.dump(vocab_dict, file)
492
+
493
+ # if tokenizer has just been created
494
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
495
+ tokenizer_kwargs = {
496
+ "config": config if config.tokenizer_class is not None else None,
497
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
498
+ "unk_token": unk_token,
499
+ "pad_token": pad_token,
500
+ "word_delimiter_token": word_delimiter_token,
501
+ }
502
+
503
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
504
+ # Note for distributed training, the .from_pretrained methods guarantee that only
505
+ # one local process can concurrently download model & vocab.
506
+
507
+ # load feature_extractor and tokenizer
508
+ tokenizer = AutoTokenizer.from_pretrained(
509
+ tokenizer_name_or_path,
510
+ use_auth_token=data_args.use_auth_token,
511
+ **tokenizer_kwargs,
512
+ )
513
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
514
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
515
+ )
516
+
517
+ # adapt config
518
+ config.update(
519
+ {
520
+ "feat_proj_dropout": model_args.feat_proj_dropout,
521
+ "attention_dropout": model_args.attention_dropout,
522
+ "hidden_dropout": model_args.hidden_dropout,
523
+ "final_dropout": model_args.final_dropout,
524
+ "mask_time_prob": model_args.mask_time_prob,
525
+ "mask_time_length": model_args.mask_time_length,
526
+ "mask_feature_prob": model_args.mask_feature_prob,
527
+ "mask_feature_length": model_args.mask_feature_length,
528
+ "gradient_checkpointing": training_args.gradient_checkpointing,
529
+ "layerdrop": model_args.layerdrop,
530
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
531
+ "pad_token_id": tokenizer.pad_token_id,
532
+ "vocab_size": len(tokenizer),
533
+ "activation_dropout": model_args.activation_dropout,
534
+ }
535
+ )
536
+
537
+ # create model
538
+ model = AutoModelForCTC.from_pretrained(
539
+ model_args.model_name_or_path,
540
+ cache_dir=model_args.cache_dir,
541
+ config=config,
542
+ use_auth_token=data_args.use_auth_token,
543
+ )
544
+
545
+ # freeze encoder
546
+ if model_args.freeze_feature_encoder:
547
+ model.freeze_feature_encoder()
548
+
549
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
550
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
551
+ # so that we just need to set the correct target sampling rate and normalize the input
552
+ # via the `feature_extractor`
553
+
554
+ # make sure that dataset decodes audio with correct sampling rate
555
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
556
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
557
+ raw_datasets = raw_datasets.cast_column(
558
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
559
+ )
560
+
561
+ # derive max & min input length for sample rate & max duration
562
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
563
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
564
+ audio_column_name = data_args.audio_column_name
565
+ num_workers = data_args.preprocessing_num_workers
566
+
567
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
568
+ phoneme_language = data_args.phoneme_language
569
+
570
+ # Preprocessing the datasets.
571
+ # We need to read the audio files as arrays and tokenize the targets.
572
+ def prepare_dataset(batch):
573
+ # load audio
574
+ sample = batch[audio_column_name]
575
+
576
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
577
+ batch["input_values"] = inputs.input_values[0]
578
+ batch["input_length"] = len(batch["input_values"])
579
+
580
+ # encode targets
581
+ additional_kwargs = {}
582
+ if phoneme_language is not None:
583
+ additional_kwargs["phonemizer_lang"] = phoneme_language
584
+
585
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
586
+ return batch
587
+
588
+ with training_args.main_process_first(desc="dataset map preprocessing"):
589
+ vectorized_datasets = raw_datasets.map(
590
+ prepare_dataset,
591
+ remove_columns=next(iter(raw_datasets.values())).column_names,
592
+ num_proc=num_workers,
593
+ desc="preprocess datasets",
594
+ )
595
+
596
+ def is_audio_in_length_range(length):
597
+ return length > min_input_length and length < max_input_length
598
+
599
+ # filter data that is shorter than min_input_length
600
+ vectorized_datasets = vectorized_datasets.filter(
601
+ is_audio_in_length_range,
602
+ num_proc=num_workers,
603
+ input_columns=["input_length"],
604
+ )
605
+
606
+ # 7. Next, we can prepare the training.
607
+ # Let's use word error rate (WER) as our evaluation metric,
608
+ # instantiate a data collator and the trainer
609
+
610
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
611
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
612
+
613
+ # for large datasets it is advised to run the preprocessing on a
614
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
615
+ # be a timeout when running the script in distributed mode.
616
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
617
+ # cached dataset
618
+ if data_args.preprocessing_only:
619
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
620
+ return
621
+
622
+ def compute_metrics(pred):
623
+ pred_logits = pred.predictions
624
+ pred_ids = np.argmax(pred_logits, axis=-1)
625
+
626
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
627
+
628
+ pred_str = tokenizer.batch_decode(pred_ids)
629
+ # we do not want to group tokens when computing the metrics
630
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
631
+
632
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
633
+
634
+ return metrics
635
+
636
+ # Now save everything to be able to create a single processor later
637
+ if is_main_process(training_args.local_rank):
638
+ # save feature extractor, tokenizer and config
639
+ feature_extractor.save_pretrained(training_args.output_dir)
640
+ tokenizer.save_pretrained(training_args.output_dir)
641
+ config.save_pretrained(training_args.output_dir)
642
+
643
+ try:
644
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
645
+ except (OSError, KeyError):
646
+ warnings.warn(
647
+ "Loading a processor from a feature extractor config that does not"
648
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
649
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
650
+ " `'processor_class': 'Wav2Vec2Processor'`",
651
+ FutureWarning,
652
+ )
653
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
654
+
655
+ # Instantiate custom data collator
656
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
657
+
658
+ # Initialize Trainer
659
+ trainer = Trainer(
660
+ model=model,
661
+ data_collator=data_collator,
662
+ args=training_args,
663
+ compute_metrics=compute_metrics,
664
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
665
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
666
+ tokenizer=feature_extractor,
667
+ )
668
+
669
+ # 8. Finally, we can start training
670
+
671
+ # Training
672
+ if training_args.do_train:
673
+
674
+ # use last checkpoint if exist
675
+ if last_checkpoint is not None:
676
+ checkpoint = last_checkpoint
677
+ elif os.path.isdir(model_args.model_name_or_path):
678
+ checkpoint = model_args.model_name_or_path
679
+ else:
680
+ checkpoint = None
681
+
682
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
683
+ trainer.save_model()
684
+
685
+ metrics = train_result.metrics
686
+ max_train_samples = (
687
+ data_args.max_train_samples
688
+ if data_args.max_train_samples is not None
689
+ else len(vectorized_datasets["train"])
690
+ )
691
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
692
+
693
+ trainer.log_metrics("train", metrics)
694
+ trainer.save_metrics("train", metrics)
695
+ trainer.save_state()
696
+
697
+ # Evaluation
698
+ results = {}
699
+ if training_args.do_eval:
700
+ logger.info("*** Evaluate ***")
701
+ metrics = trainer.evaluate()
702
+ max_eval_samples = (
703
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
704
+ )
705
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
706
+
707
+ trainer.log_metrics("eval", metrics)
708
+ trainer.save_metrics("eval", metrics)
709
+
710
+ # Write model card and (optionally) push to hub
711
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
712
+ kwargs = {
713
+ "finetuned_from": model_args.model_name_or_path,
714
+ "tasks": "speech-recognition",
715
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
716
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
717
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
718
+ }
719
+ if "common_voice" in data_args.dataset_name:
720
+ kwargs["language"] = config_name
721
+
722
+ if training_args.push_to_hub:
723
+ trainer.push_to_hub(**kwargs)
724
+ else:
725
+ trainer.create_model_card(**kwargs)
726
+
727
+ return results
728
+
729
+
730
+ if __name__ == "__main__":
731
+ main()
runs/Jan09_01-33-59_pop-os/1641688535.2695231/events.out.tfevents.1641688535.pop-os.67698.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45b5a881216c59401b5a36b0684ba2bb13d9babf4bc89925876e15331322a4a6
3
+ size 4681
runs/Jan09_01-33-59_pop-os/events.out.tfevents.1641688535.pop-os.67698.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61ae0f0fbaecfb3dc87a6aa25a7264e6b9db00506f1ab4b1721421cfb16f71a3
3
+ size 4136
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c1f8acc5618841035918d237aad5f0ce6e2185ca9c71802238520f131bf3c62
3
+ size 2863
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"!": 1, ",": 2, "-": 3, ".": 4, ":": 5, ";": 6, "?": 7, "а": 8, "б": 9, "в": 10, "г": 11, "д": 12, "е": 13, "ж": 14, "з": 15, "и": 16, "к": 17, "л": 18, "м": 19, "н": 20, "о": 21, "п": 22, "р": 23, "с": 24, "т": 25, "у": 26, "ф": 27, "х": 28, "ц": 29, "ч": 30, "ш": 31, "ы": 32, "ь": 33, "џ": 34, "қ": 35, "ҟ": 36, "ҩ": 37, "ҭ": 38, "ҳ": 39, "ҵ": 40, "ҷ": 41, "ҽ": 42, "ҿ": 43, "ә": 44, "ӡ": 45, "ӷ": 46, "ԥ": 47, "–": 48, "|": 0, "[UNK]": 49, "[PAD]": 50}