Update README.md
Browse files
README.md
CHANGED
@@ -1,11 +1,16 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
|
8 |
-
|
9 |
|
10 |
|
11 |
|
@@ -15,185 +20,106 @@ tags: []
|
|
15 |
|
16 |
<!-- Provide a longer summary of what this model is. -->
|
17 |
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
### Model Sources [optional]
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
|
62 |
-
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
|
155 |
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
|
159 |
### Compute Infrastructure
|
|
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
|
173 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- RekaAI/VibeEval
|
6 |
+
base_model:
|
7 |
+
- meta-llama/Llama-3.2-11B-Vision-Instruct
|
8 |
+
pipeline_tag: image-text-to-text
|
9 |
---
|
10 |
|
11 |
+
# Model Card for hiiamsid/llama-3.2-vision-11B-ROCO
|
12 |
|
13 |
+
This is the finetuned version of meta-llama/Llama-3.2-11B-Vision-Instruct trained on MedIR/roco dataset using FSDP on 2 A100s.
|
14 |
|
15 |
|
16 |
|
|
|
20 |
|
21 |
<!-- Provide a longer summary of what this model is. -->
|
22 |
|
|
|
23 |
|
24 |
+
- **Developed by:** hiiamsid
|
25 |
+
- **Model type:** multimodal (Image/Text to Text)
|
26 |
+
- **Language(s) (NLP):** multilingual
|
27 |
+
- **License:** Apache License 2.0
|
28 |
+
- **Finetuned from model [optional]:** meta-llama/Llama-3.2-11B-Vision-Instruct
|
|
|
|
|
29 |
|
|
|
30 |
|
31 |
+
## How to Get Started with the Model
|
32 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
import requests
|
35 |
+
from PIL import Image
|
36 |
+
import torch
|
37 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
38 |
|
39 |
+
base_model = "hiiamsid/llama-3.2-vision-11B-ROCO"
|
40 |
|
41 |
+
processor = AutoProcessor.from_pretrained(base_model)
|
42 |
|
43 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
44 |
+
base_model,
|
45 |
+
low_cpu_mem_usage=True,
|
46 |
+
torch_dtype=torch.bfloat16,
|
47 |
+
device_map="auto",
|
48 |
+
)
|
49 |
|
50 |
+
url = "https://lh7-rt.googleusercontent.com/docsz/AD_4nXcz-J3iR2bEGcCSLzay07Rqfj5tTakp2EMTTN0x6nKYGLS5yWl0unoSpj2S0-mrWpDtMqjl1fAgH6pVkKJekQEY_kwzL6QNOdf143Yt66znQ0EpfLvx6CLFOqw41oeOYmhPZ6Qrlb5AjEr4AenIOgBMTWTD?key=vhLUYntaS9QOx531XpJH3g"
|
51 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
52 |
|
53 |
+
messages = [
|
54 |
+
{"role": "user", "content": [
|
55 |
+
{"type": "image"},
|
56 |
+
{"type": "text", "text": "Describe the tutorial feature image."}
|
57 |
+
]}
|
58 |
+
]
|
59 |
+
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
60 |
+
inputs = processor(image, input_text, return_tensors="pt").to(model.device)
|
61 |
|
62 |
+
output = model.generate(**inputs, max_new_tokens=120)
|
63 |
+
print(processor.decode(output[0]))
|
64 |
+
```
|
65 |
|
66 |
## Training Details
|
67 |
|
68 |
### Training Data
|
69 |
+
MedIR/roco: https://huggingface.co/datasets/MedIR/roco (only 1000 samples where used for training)
|
|
|
|
|
|
|
70 |
|
71 |
### Training Procedure
|
72 |
|
73 |
+
-Trained using FSDP activating wraping policy, MixedPrecision Policy (on bfloat16), activationcheckpointing etc and saved using Type FULL_STATE_DICT
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
#### Training Hyperparameters
|
76 |
|
77 |
+
```
|
78 |
+
@dataclass
|
79 |
+
class train_config:
|
80 |
+
model_name: str="meta-llama/Llama-3.2-11B-Vision-Instruct"
|
81 |
+
batch_size_training: int=8
|
82 |
+
batching_strategy: str="padding" #alternative is packing but vision model doesn't work with packing.
|
83 |
+
context_length: int =4096
|
84 |
+
gradient_accumulation_steps: int=1
|
85 |
+
num_epochs: int=3
|
86 |
+
lr: float=1e-5
|
87 |
+
weight_decay: float=0.0
|
88 |
+
gamma: float= 0.85 # multiplicatively decay the learning rate by gamma after each epoch
|
89 |
+
seed: int=42
|
90 |
+
use_fp16: bool=False
|
91 |
+
mixed_precision: bool=True
|
92 |
+
val_batch_size:int = 1
|
93 |
+
use_peft: bool = False
|
94 |
+
output_dir: str = "workspace/models"
|
95 |
+
enable_fsdp: bool = True
|
96 |
+
dist_checkpoint_root_folder: str="workspace/FSDP/model" # will be used if using FSDP
|
97 |
+
dist_checkpoint_folder: str="fine-tuned" # will be used if using FSDP
|
98 |
+
save_optimizer: bool=False # will be used if using FSDP
|
99 |
+
|
100 |
+
@dataclass
|
101 |
+
class fsdp_config:
|
102 |
+
mixed_precision: bool = True
|
103 |
+
use_fp16: bool=False
|
104 |
+
sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD # HYBRID_SHARD "Full Shard within a node DDP cross Nodes", SHARD_GRAD_OP "Shard only Gradients and Optimizer States", NO_SHARD "Similar to DDP".
|
105 |
+
hsdp : bool =False # Require HYBRID_SHARD to be set. This flag can extend the HYBRID_SHARD by allowing sharding a model on customized number of GPUs (Sharding_group) and Replicas over Sharding_group.
|
106 |
+
sharding_group_size: int=0 # requires hsdp to be set. This specifies the sharding group size, number of GPUs that you model can fit into to form a replica of a model.
|
107 |
+
replica_group_size: int=0 #requires hsdp to be set. This specifies the replica group size, which is world_size/sharding_group_size.
|
108 |
+
checkpoint_type: StateDictType = StateDictType.FULL_STATE_DICT # alternatively FULL_STATE_DICT can be used. SHARDED_STATE_DICT saves one file with sharded weights per rank while FULL_STATE_DICT will collect all weights on rank 0 and save them in a single file.
|
109 |
+
fsdp_activation_checkpointing: bool=True
|
110 |
+
fsdp_cpu_offload: bool=False
|
111 |
+
pure_bf16: bool = True
|
112 |
+
optimizer: str= "AdamW"
|
113 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
### Model Architecture and Objective
|
116 |
+
This was just trained to see how much improvement can be seen when finetuned llama 3.2 vision.
|
|
|
117 |
|
118 |
### Compute Infrastructure
|
119 |
+
Trained on 2 A100 (80GB) from runpods.
|
120 |
|
121 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
124 |
+
https://github.com/meta-llama/llama-recipes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
[More Information Needed]
|