--- library_name: transformers license: apache-2.0 datasets: - RekaAI/VibeEval base_model: - meta-llama/Llama-3.2-11B-Vision-Instruct pipeline_tag: image-text-to-text --- # Model Card for hiiamsid/llama-3.2-vision-11B-ROCO This is the finetuned version of meta-llama/Llama-3.2-11B-Vision-Instruct trained on MedIR/roco dataset using FSDP on 2 A100s. ## Model Details ### Model Description - **Developed by:** hiiamsid - **Model type:** multimodal (Image/Text to Text) - **Language(s) (NLP):** multilingual - **License:** Apache License 2.0 - **Finetuned from model [optional]:** meta-llama/Llama-3.2-11B-Vision-Instruct ## How to Get Started with the Model ``` import requests from PIL import Image import torch from transformers import MllamaForConditionalGeneration, AutoProcessor base_model = "hiiamsid/llama-3.2-vision-11B-ROCO" processor = AutoProcessor.from_pretrained(base_model) model = MllamaForConditionalGeneration.from_pretrained( base_model, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, device_map="auto", ) url = "https://lh7-rt.googleusercontent.com/docsz/AD_4nXcz-J3iR2bEGcCSLzay07Rqfj5tTakp2EMTTN0x6nKYGLS5yWl0unoSpj2S0-mrWpDtMqjl1fAgH6pVkKJekQEY_kwzL6QNOdf143Yt66znQ0EpfLvx6CLFOqw41oeOYmhPZ6Qrlb5AjEr4AenIOgBMTWTD?key=vhLUYntaS9QOx531XpJH3g" image = Image.open(requests.get(url, stream=True).raw) messages = [ {"role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "Describe the tutorial feature image."} ]} ] input_text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(image, input_text, return_tensors="pt").to(model.device) output = model.generate(**inputs, max_new_tokens=120) print(processor.decode(output[0])) ``` ## Training Details ### Training Data MedIR/roco: https://huggingface.co/datasets/MedIR/roco (only 1000 samples where used for training) ### Training Procedure -Trained using FSDP activating wraping policy, MixedPrecision Policy (on bfloat16), activationcheckpointing etc and saved using Type FULL_STATE_DICT #### Training Hyperparameters ``` @dataclass class train_config: model_name: str="meta-llama/Llama-3.2-11B-Vision-Instruct" batch_size_training: int=8 batching_strategy: str="padding" #alternative is packing but vision model doesn't work with packing. context_length: int =4096 gradient_accumulation_steps: int=1 num_epochs: int=3 lr: float=1e-5 weight_decay: float=0.0 gamma: float= 0.85 # multiplicatively decay the learning rate by gamma after each epoch seed: int=42 use_fp16: bool=False mixed_precision: bool=True val_batch_size:int = 1 use_peft: bool = False output_dir: str = "workspace/models" enable_fsdp: bool = True dist_checkpoint_root_folder: str="workspace/FSDP/model" # will be used if using FSDP dist_checkpoint_folder: str="fine-tuned" # will be used if using FSDP save_optimizer: bool=False # will be used if using FSDP @dataclass class fsdp_config: mixed_precision: bool = True use_fp16: bool=False sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD # HYBRID_SHARD "Full Shard within a node DDP cross Nodes", SHARD_GRAD_OP "Shard only Gradients and Optimizer States", NO_SHARD "Similar to DDP". hsdp : bool =False # Require HYBRID_SHARD to be set. This flag can extend the HYBRID_SHARD by allowing sharding a model on customized number of GPUs (Sharding_group) and Replicas over Sharding_group. sharding_group_size: int=0 # requires hsdp to be set. This specifies the sharding group size, number of GPUs that you model can fit into to form a replica of a model. replica_group_size: int=0 #requires hsdp to be set. This specifies the replica group size, which is world_size/sharding_group_size. checkpoint_type: StateDictType = StateDictType.FULL_STATE_DICT # alternatively FULL_STATE_DICT can be used. SHARDED_STATE_DICT saves one file with sharded weights per rank while FULL_STATE_DICT will collect all weights on rank 0 and save them in a single file. fsdp_activation_checkpointing: bool=True fsdp_cpu_offload: bool=False pure_bf16: bool = True optimizer: str= "AdamW" ``` ### Model Architecture and Objective This was just trained to see how much improvement can be seen when finetuned llama 3.2 vision. ### Compute Infrastructure Trained on 2 A100 (80GB) from runpods. ## Citation https://github.com/meta-llama/llama-recipes [More Information Needed]