--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 metrics: - type: mean_reward value: 0.17 +/- 0.38 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Codes Github repos(Give a star if found useful): * https://github.com/hishamcse/DRL-Renegades-Game-Bots * https://github.com/hishamcse/Advanced-DRL-Renegades-Game-Bots * https://github.com/hishamcse/Robo-Chess Kaggle Notebook: * https://www.kaggle.com/code/syedjarullahhisham/drl-huggingface-unit-2-frozenlake-v1-taxi-v3 ## Usage ```python model = load_from_hub(repo_id="hishamcse/q-FrozenLake-v1-8x8", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```